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Some issues

Relevance for heavy ion collisions: Initial versus final state

 (QGP) effects. 

What is the wave-function of a hadron, a nucleus, at high 
energy?

Dominance of small x gluons. Saturation effects. Are they 
relevant, visible?

Need for new schemes to calculate. Non linear evolution 
equations. CGC. How to test these? In particular transition 

from high pT regime to saturation regime? 



Some issues

Initial state of nucleus-nucleus collisions? 

Transition to the QGP? Thermalization? 

Can this be understood in terms of weak coupling ? Or are 
strong coupling techniques necessary ?

Is the saturation regime universal? Universality of the hadron 
cross sections at high energy? 

Etc.



LECTURE 1 

Electron scattering  
and the structure of matter



Why electrons ?

Interaction with matter well known (QED) and weak (can be 
treated with perturbation theory). 

Electrons are ‘pointlike’ particles (size less than 0.001 fm)

Exchanged photon is space-like

virtuality of the exchanged photon

In rest frame of nucleus
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Elastic scattering

Elastic scattering on a nucleus. Ignore polarization effect (spin 
average). Dominated by Coulomb interaction. Non relativistic 
treatment.

Mott cross section

Elastic form factor
Diffusion on a pointlike charge

Contains information

 on the structure of the nucleus
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(diffusion on a spin 1/2 point-like charged particle)



Elastic scattering
Elastic form factor

F (q) =
∑

i

Hiq·(ri−R)
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F (q) =
∑

i

Hiq·(ri−R)

⟨Ψ0|F (q)|Ψ0⟩ ≈
∫

G3r Hiq·r ρS(r)
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For a pointlike particle

S(q,ω) =

∫
G2k
(2π)3

Θ(kF−k) δ

(
ω − q2

2m
− q · k

m

)

F (q) = 1
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For a charge distribution

S(q,ω) =

∫
G2k
(2π)3

Θ(kF−k) δ

(
ω − q2
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− q · k

m
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F (q) = 1
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Note factor    in the cross section: coherence. 



Some form factors

Sharp sphere

S(q,ω) =

∫
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(2π)3
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Hydrogen atom
F (q) =

(
1

1 + q2a20

)2

ψ(r) ∼ H−r/a0
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F (q) =

(
1

1 + q2a20

)2

ψ(r) ∼ H−r/a0
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Proton

F (q) =

(
1

1 + q2a20

)2

ψ(r) ∼ H−r/a0

GE(q
2) ≈ 1

(
1− q2/q20

)2
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F (q) =

(
1

1 + q2a20
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ψ(r) ∼ H−r/a0

GE(q
2) ≈ 1

(
1− q2/q20

)2

q0 ≈ 0.84 *H9
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√
⟨r2⟩ ≈ 0.83 IP
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Elastic form factor for







Inelastic scattering
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Same structure as elastic scattering 

ρ(q) =
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∑
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F (q) = 1
�

Response function:



Sketch of a proof

x%M =
Q2

2P · q

ν = Mq0 = M(E − E¶)

G2σ

GE¶GΩ
∝
∑

n,k¶

∣∣⟨Ψn;k¶|HLQW|ψ0;k⟩
∣∣2 δ(E¶ + En − E − E0)
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i

VFRXO(r − ri)
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∑

i

Hiq·r|ψ0⟩
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Coulomb scattering in Born approximation

x%M =
Q2

2P · q

ν = Mq0 = M(E − E¶)
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length and time scales

Natural  length scale: nuclear size

Natural time scale: 

Characterizing correlations between density fluctuations

If system is probed with 

correlations are ‘invisible’: the probe scatters on 

constituents as if they were non interacting



Quasi-elastic peak



S(q,ω) =
3m

4qkF
Z
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− q

2kF

)2
]
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Incoherent scattering on the protons of the nucleus

S(ω, q) =
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Note the factor Z reflecting incoherence of the scattering



Deep inelastic scattering

ν = P · q

W 2 ≡ (P + q)2 = M 2 + 2ν + q2

x%M

�

ν = P · q

W 2 ≡ (P + q)2 = M 2 + 2ν + q2

x%M

�

ν = P · q

W 2 ≡ (P + q)2 = M 2 + 2ν + q2

x%M =
Q2

2P · q
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In rest frame of the proton

ν = P · q

W 2 ≡ (P + q)2 = M 2 + 2ν + q2

x%M =
Q2

2P · q

ν = Mq0 = M(E − E¶)
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Lorentz invariant

Bjorken x

For elastic scattering





√
⟨r2⟩ ≈ 0.83 IP
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1
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The inclusive cross section takes the form
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Generalization of the response function



W2 = δ
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Incoherent scattering on point-like (spin 1/2) constituents

The delta functions reflect energy momentum conservation

One can write

Scaling. No scale !

2mW1(Q
2, ν) =

Q2

2mν
δ

(
Q2

2mν
− 1

)
= x%Mδ(x%M − 1)

aµ −→
(
a± ≡ a0 ± a3√

2
,a⊥

)

x · y = x+y− + x−y+ − x⊥ · y⊥

ν = P · q

W 2 ≡ (P + q)2 = M 2 + 2ν + q2
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Length and time scales (again)

Infinite momentum frame (for the proton)

Typical time scale characterizing the parton motion

typical parton time scales

are Lorentz dilated

Choose (Breit frame) 

so that the virtual photon probes transverse sizes 

Duration of DIS process

Besides



Pre-QCD parton model

The proton is a collection of point-like fermions,  

A parton of type i, carrying a fraction xF of the total

proton momentum contributes



What about QCD

The parton picture emerges without specific reference 

to the actual dynamics. 

!
Asymptotic freedom does not seem required…

Dynamics enter in specific deviations from the simple 

parton model (scaling violations)



Light cone wave function

Relativity is important

The « wave function » of the proton (or nucleus) depends on frame, 
depends on probe, etc. 

Constituents: nucleons, valence quarks, gluons, sea quarks 	

and antiquarks



One can calculate the change of the wave-function, not the wf	

itself. One needs « initial conditions »



E.g., for a single valence quark (perturbation theory)

Radiation and multiplication of partons

Gluon density



What QCD tells us

Asymptotic freedom leads to specific violations of the 

naive parton model:    dependence of the structure 

functions.  

Q2

The parton distributions are non perturbative, but their

dependence on    and     can be calculated with 

perturbation theory (from non perturbative initial 

conditions). Evolution equations (DGLAP, BFKL, etc). 

Q2
x

The parton distributions are universal, i.e., they are 

the same in all inclusive processes. 
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Length and time scales (again)

DIS in proton rest frame, with 

We have so that

Also, hence

We want to characterize the typical time and longitudinal distances involved in 

Light cone coordinates



It follows that 

that is,  and 

If can be much greater than 

Therefore

tDIS ⇠ 1/(MxBj )



(Golec-Biernat,Kwiecinski,Stasto)

Geometrical scaling



Lecture 2: High density QCD



Gluon density is large at small x



Non linear effects in QCD

Non linear effects in QCD when (typically)

or equivalently

• Physics of the quark gluon plasma

• High density of small x gluons

Occur e.g. in

A system can be strongly coupled (or strongly 
interacting) even when the coupling constant is 
small 



Quantum ChromoDynamics



Thermal fluctuations 

One can define an expansion parameter 

For short wavelength modes  and one can use 

perturbation theory

However, for 
Long wavelength modes are strongly coupled, and highly 
occupied

we have

whatever the strength of the coupling

Quark-gluon plasma



Weakly AND  strongly coupled … 

Degrees of freedom with different wavelengths 
are differently coupled. 

The QGP is a multiscale system

Expansion parameter depends on magnitude 
of thermal fluctuations and on their 
wavelengths



Small x gluons 

gluon saturation for 

Gluon phase space density

Recall typical transverse size of small x gluons

Non linear effects expected when Saturation momentum

Gluon saturation



The saturation scale

In a nucleus

From fit to DIS (HERA)





‘Wave-function’ of a nucleus  
 at very high energy 

 Linear evolution equations 
and onset of saturation



E.g., for a single valence quark (perturbation theory)

Radiation and multiplication of partons

↵s ln Q2 ⇠ 1When leading order perturbation theory is not 
enough. Resummation is needed 

DGLAP cascade



Evolution equations  

(DGLAP)

(DLL)



(BFKL)

Exponential growth of density at small x 

Radiated gluons act as sources for  
the emissions of new gluons



DGLAP cascade BFKL cascade

k2
?n � k2

?n�1 � · · · � k2
?2 � k2

?1 x

+
1 � x

+
2 � · · · x+n



Growth of structure functions is tamed by  
non-linear contributions in evolution equations 

[Gribov, Levin, Ryskin,83’- Mueller, Qiu, 86’]  

Emergence of a scale: the saturation momentum

[Gribov, Levin, Ryskin,83’]
For instance, 





Color dipoles  
 Wilson lines



Interaction of an electric dipole with a random field E

T

~d

~E

H = �~d · ~E

Warm up exercise

Evolution operator

U = e�iHT = eidET

Average over the random (Gaussian) 
distribution of E field

S = e
� 1

4
d2

r2
s

« Survival probability »

1
r2

s
= hE2T 2i

S 2 = e
� 1

2
d2

r2
s



Dipole-nucleus scattering amplitude 

Eikonal propagation of the quark in the nucleus

x

± =
x

0 ± x

3
p

2



Color dipole in eikonal approximation

In slightly more general terms, the onset of saturation coincides with a break-
down of perturbation theory where gluon interaction energies become compa-
rable to their transverse kinetic energies, that is @2 ⇠ ↵

s

hA2i
Q

, where hA2i
Q

denotes the fluctuations of the gauge fields with transverse momenta up to
Q, hA2i

Q

⇠ xG(x,Q2)/⇡R2. Thus, as illustrated in Fig. 2, the saturation mo-
mentum separates partons into dilute modes with k? � Q

s

that are weakly
coupled, and modes with k? . Q

s

that are strongly coupled because densely
populated.

3 Color dipoles, Wilson lines

Another view of saturation, that will eventually lead us to the most elaborate
non linear evolution equations, builds on a picture commonly used in the
analysis of lepton-hadron deep-inelastic scattering (DIS). In an appropriate
frame, one can describe the interaction of the virtual photon with the hadron
as the interaction of a color qq̄ dipole (emerging form the photon) with the
color field of the hadron (see Fig. 3). The factor in the interaction cross section
that is relevant for the present discussion is �dip(x, r?), the total dipole-hadron
cross-section (that we assume for simplicity here to be a function of x and r?
– for a recent and thorough analysis of this picture see [16]). This dipole cross
section can be calculated in the eikonal approximation, with the size r? of the
dipole remaining unchanged during the interaction. In this approximation, the
S-matrix for the scattering of a quark moving in the negative z direction is
given by the Wilson line

U(x?) ⌘ P exp


�ig
Z +1

�1
dz�A+(z�,x?)

�

, (11)

where P denotes an ordering along the x� axis, and A+ is the classical (frozen)
color field of the hadron moving close to the speed of light in the +z direction.
The S-matrix for the scattering of the dipole contains another, complex con-
jugate, Wilson line. Keeping in mind that after averaging over the field of the
hadron the S-matrix will be real, we can write the total dipole cross section
as �

dip

= 2
R

d2b (1� S(b, r?))

S(b, r?) =
1

N
c

Tr
⌧

U(b+
r?

2
)U †(b� r?

2
)
�

. (12)

In fact we shall ignore here the impact parameter dependence and write simply
S(r?). It is also customary to set S = 1�N , with N denoting the imaginary
part of the forward scattering amplitude. (The real part is negligible at high
energy, and would disappear anyway in the gaussian averages that we are
going to perform.) Obviously, when r? ! 0, the scattering amplitude vanishes,

7

S-matrix for a high energy quark moving in negative z-direction

Dipole cross section
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analysis of lepton-hadron deep-inelastic scattering (DIS). In an appropriate
frame, one can describe the interaction of the virtual photon with the hadron
as the interaction of a color qq̄ dipole (emerging form the photon) with the
color field of the hadron (see Fig. 3). The factor in the interaction cross section
that is relevant for the present discussion is �dip(x, r?), the total dipole-hadron
cross-section (that we assume for simplicity here to be a function of x and r?
– for a recent and thorough analysis of this picture see [16]). This dipole cross
section can be calculated in the eikonal approximation, with the size r? of the
dipole remaining unchanged during the interaction. In this approximation, the
S-matrix for the scattering of a quark moving in the negative z direction is
given by the Wilson line
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S(r?). It is also customary to set S = 1�N , with N denoting the imaginary
part of the forward scattering amplitude. (The real part is negligible at high
energy, and would disappear anyway in the gaussian averages that we are
going to perform.) Obviously, when r? ! 0, the scattering amplitude vanishes,
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Note « color transparency »: the scattering amplitude vanishes  
as r? ! 0
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S (r?) = �Q2
s r2
?/4

Q

2
s

/ hE(x?)2i / xG(x, 1/r2
?)

« Black disk » limit when r? � 1/Qs
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s

hA2i
Q
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Q
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Q
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s
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s
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Assume gaussian average

Dipole S-matrix in terms of Wilson lines (eikonal)



(Golec-Biernat,Kwiecinski,Stasto)

Geometrical scaling



The evolution of the dipole amplitude

(BK)

(B-JIMWLK)



The ‘saturation front’ and its universal behavior 

Travelling wave solutions [Meunier, Peschanski, 05’] 

‘Geometrical scaling’  
naturally emerges

Analogy with reaction difffusion processes

N(r,Y) = N(r � rs(Y))



Classical fields 
CGC



During interaction process, the field A of the target is frozen  
(separation of scales - adiabatic approximation)

Averaging over color field of the nucleus

Fields are created by (frozen)sources. Fields are obtained  
from Yang-Mills equations

Emphasis is put on small x part of the wave function (strong 
sources)



More conventional notation (fields -> color charges)

Evolution equations (JIMWLK, BK) may be viewed as  
non linear equations for 

MV model

Emphasis is put on color charge distributions and  
their correlations



So, what is the color glass condensate?

• Evolution equation 

• Attempt to calculate ‘wave functions’ 
from first principles 







Empirical evidences



Empirical evidences

- Geometrical scaling (DIS, photon-A,pp, etc…) 

- Multiplicity in HI collisions, energy dependence,  

centrality dependence 

-Limiting fragmentation 

-Long range rapidity correlations (‘ridge’, in AA, in pp) 

-Forward rapidity phenomena (disappearance of Cronin 

peak, disappearance of dijet correlations)

For a recent review, see Albacete, Marquet in arXiv:1401.4866



Phenomenology based on a few ingredients

Saturation momentum 

Running coupling

kT factorization 

Evolution equation (BK or improved versions, rcBK, etc)

NB. i)Phenomenology is blind to many details of the theory.  
ii)Many features hold only in asymptotic regimes





Limiting fragmentation



Forward correlation in di-hadron production

p + A! h1h2X

x

i

=
|p

i?|p
s

NN

x

A

= x1e�2y1 + x2e�2y2

qA! qgX





The calculation involves complicated correlators of Wilson lines

• intrinsically difficult (can be simplified a bit in large Nc)

• initial conditions ? 


