Study the QCD Phase Structure in High-Energy Nuclear Collisions

Nu Xu^(1,2)

⁽¹⁾ College of Physical Science & Technology, Central China Normal University, China ⁽²⁾ Nuclear Science Division, Lawrence Berkeley National Laboratory, USA

2013 NOBEL PRIZE IN PHYSICS

Francois Englert and Peter Higgs,

© © The Nobel Foundation. Photo: Lovisa Engblom.

"for the theoretical discovery of a mechanism that **contributes to our understanding of the origin of mass of subatomic particles**, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

QCD in the Twenty-First Century

QCD in the Twenty-First Century

Phase Diagram: Water

Phase diagram: A map shows that, at given degrees of freedom, how matter organize itself under external conditions.

Water: H₂O

The QCD phase diagram:

structure of matter with quark-, gluon-degrees (color degrees) of freedom.

The QCD Phase Diagram and High-Energy Nuclear Collisions

QCD Phase Diagram (1953)

QCD Phase Diagram (1983)

QCD Phase Diagram (2009)

nucl-th: 0907.4489, NPA830,709(09) L. McLerran

NPA837, 65(2010) nucl-th 0911.4806: A. Andronic, D. Blaschke, P. Braun-Munzinger, J. Cleymans, K. Fukushima, L.D. McLerran, H. Oeschler, R.D. Pisarski, K. Redlich, C. Sasaki, H. Satz, and J. Stachel

Running Coupling Constant: α_s

 α_s : strong coupling constant Q: momentum transfer

QCD models provide reasonable results on the Q-dependence of the strong coupling constant, especially at high Q.

As a function of the momentum transfer, the strong coupling constant α_s decreases exponentially, but never goes to zero, meaning STRONG interactions are always there!

Reference: S.Bethke, hep-ex/0004021

QCD on Lattice

QCD Thermodynamics

Outline

- (1) Introduction
- (2) Experimental Setup
- (3) Recent Results:
 - Collectivity
 - Criticality
 - Chirality

(4) Summary and Outlook

Large Hadron Collider

ALICE Experiment

Relativistic Heavy Ion Collider

Brookhaven National Laboratory (BNL), Upton, NY

STAR Detector System

High-Energy Nuclear Collider Experiments

"Quark Matter 2015 Student-Day" Kobe, Japan, 9/27 – 10/3, 2015

Facility for Antiproton & Ion Research

The CBM Experiment at FAIR

Exploring QCD Phase Structure

Nu Xu

Collectivity

More see talks by B. Schenke, J-Y. Ollitrault

Anisotropy Parameter v₂

Initial/final conditions, EoS, degrees of freedom

Partonic Collectivity at RHIC

Low $p_T (\leq 2 \text{ GeV/c})$: hydrodynamic mass ordering High $p_T (> 2 \text{ GeV/c})$: *number of quarks scaling (NCQ)*

Partonic Collectivity, necessary for QGP! De-confinement in Au+Au collisions at RHIC!

Comparison with Model Results

Small value of specific viscosity over entropy η/s
 Model uncertainty dominated by *initial eccentricity* ε

Model: Song et al. PRL106, 192301(2011), arXiv:1011.2783

Low *η*/**s** for QCD Matter at RHIC

η/s ≥ 1/4π, 'perfect liquid' η/s(QCD matter) << η/s(QED matter)

Beam Energy Scan at RHIC

Study QCD Phase Structure

- Onset of sQGP
- Phase boundary and critical point
- Chiral symmetry

BES-I: √*s_{NN}* = 7.7, 11.5, 14.5, 19.6, 27, 39GeV

BES-II: √*s*_{*NN*} ≤ 20GeV

(1) Collectivity: EOS of the system

(2) Critical point* (critical region): High order cumulants

Identified Hadron Spectra

"Quark Matter 2015 Student-Day" Kobe, Japan, 9/27 – 10/3, 2015

Hadron Spectra from RHIC

p+p and Au+Au collisions at 200 GeV

Thermal Model Fits (Blast-Wave)

Source is assumed to be:

- Locally thermal equilibrated
- Boosted in radial direction

Blast Wave Fits: RHIC

Kinetic Freeze-out at LHC similar to that from RHIC. Collective velocity parameter β is stronger in the most central collisions => Stronger collective expansion at LHC!

ALICE: B. Abelev et al, Phys. Rev. Lett. 109, (12) 252301; Phys. Rev. C88, (13) 044910

Statistical Model Fits

- Assume thermally (constant T_{ch}) and chemically (constant n_i) equilibrated system at chemical freeze-out
- System composed of non-interacting hadrons and resonances
- Given T_{ch} and μ_i 's (+ system size), n_i 's can be calculated in a grand canonical ensemble

$$n_{i} = \frac{g}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2} dp}{e^{(E_{i}(p) - \mu_{i})/T} \pm 1}, \quad E_{i} = \sqrt{p^{2} + m_{i}^{2}}$$

- T_{ch} and μ_i *i=B, Q, S*
- Obey conservation laws: Baryon Number, Strangeness, Isospin
- Short-lived particles and resonances need to be taken into account

Bulk Properties at Freeze-out

Chemical Freeze-out: (GCE)

- Central collisions.
- Centrality dependence, not shown, of T_{ch} and μ_B !

Kinetic Freeze-out:

- Central collisions => lower value of
 T_{kin} and larger collectivity β
- Stronger collectivity at higher energy

Charged and PID Hadron v₂ Results

- Normalized to 200 GeV results
- **Stronger collectivity** at higher collision energy
- Particle and antiparticle display different behavior as a function of collision energy

Collectivity v₂ Measurements

- Number of constituent quark (NCQ) scaling in v₂ => partonic collectivity => deconfinement in high-energy nuclear collisions
- 2) At $\sqrt{s_{NN}}$ < 11.5 GeV, the universal v₂ NCQ scaling is broken, consistent with hadronic interactions becoming dominant.

BES v₂ and Model Comparison

Baryonic Chemical Potential μ_B (MeV)

(a) Hydro + Transport: [J. Steinheimer, et al. PRC86, 44902(13).]

- (b) NJL model: Hadron splitting consistent. Sensitive to vector-coupling, **CME**, **net-baryon density** driven. [J. Xu, et al., arXiv:1308.1753/PRL112.012301]
- (c) Pure Hydro solution with μ_B , viscosity: [Hatta et al. arXiv:1502.05894//1505.04226// 1507.04690 //]. Chemical potential μ_B and viscosity η/s driven!

Summary I

- At high energy-nuclear collisions liquid-like quark-gluon plasma formed, η/s small
- 2) Current experiments, RHIC BES, cover 0 $<\mu_B < 420$ MeV
- 3) The v₂ show strong dependence on μ_B ! At high baryon (low energy) region, NCQ-scaling in v₂ disappeared and v₂(particle) > v₂(anti-particle).

Criticality

More see talk by K. Fukushima

Susceptibilities and Moments

Thermodynamic function:

$$\frac{p}{T^4} = \frac{1}{\pi^2} \sum_i d_i (m_i / T)^2 K_2(m_i / T) \cosh[(B_i \mu_B + S_i \mu_S + Q_i \mu_Q) / T]$$
The susceptibility: $T^{n-4} \chi_q^{(n)} = \frac{1}{T^4} \frac{\partial^n}{\partial (\mu_q / T)^n} P\left(\frac{T}{T_c}, \frac{\mu_q}{T}\right)|_{T/T_c}, \quad q = B, Q, S$

$$\chi_q^{(1)} = \frac{1}{VT^3} \langle \delta N_q \rangle$$

$$\chi_q^{(2)} = \frac{1}{VT^3} \langle (\delta N_q)^2 \rangle$$

$$\chi_q^{(3)} = \frac{1}{VT^3} \langle (\delta N_q)^3 \rangle$$

$$\chi_q^{(4)} = \frac{1}{VT^3} \left(\langle \delta N_q \rangle^4 \right) - 3 \langle (\delta N_q)^2 \rangle^2 \rangle$$

Thermodynamic function ⇔ Susceptibility ⇔ Moments Model calculations, e.g. LGT, HRG ⇔ Measurements

Higher Moments

- Higher moments of conserved quantum numbers:
 Q, S, B, in high-energy nuclear collisions
- 2) Sensitive to critical point (ξ correlation length):

$$\left\langle \left(\delta N \right)^2 \right\rangle \approx \xi^2, \ \left\langle \left(\delta N \right)^3 \right\rangle \approx \xi^{4.5}, \ \left\langle \left(\delta N \right)^4 \right\rangle \approx \xi^7$$

3) Direct comparison with calculations at any order:

$$S\sigma \approx \frac{\chi_B^3}{\chi_B^2}, \qquad \kappa\sigma^2 \approx \frac{\chi_B^4}{\chi_B^2}$$

 Extract susceptibilities and freeze-out temperature. An independent/important test of thermal equilibrium in heavy ion collisions.

References:

- STAR: PRL105, 22303(10); ibid, 032302(14)
- M. Stephanov: *PRL*102, 032301(09) // R.V. Gavai and S. Gupta, *PLB696*, 459(11) // F. Karsch et al, *PLB695*, 136(11) // S.Ejiri et al, PLB633, 275(06)
- A. Bazavov et al., PRL109, 192302(12) // S. Borsanyi et al., PRL111, 062005(13) // V. Skokov et al., PRC88, 034901(13)

Higher Moments Results

Net-proton results:

- 1) All data show deviations below Poisson for $\kappa\sigma^2$ at all energies. Larger deviation at $\sqrt{s_{NN}}$ ~20GeV
- 2) UrQMD model shows monotonic behavior in the moment products STAR: PRL112, 32302(14)

Net-charge results:

- No non-monotonic behavior
- More affected by the resonance decays

STAR: PRL113, 92301(14) P. Garg et al, PLB726, 691(13)

BES-II:

Higher statistics needed for collisions at $\sqrt{s_{NN}} < 20 \text{ GeV}$

Extend Proton Identification with TOF

Published net-proton results: Only TPC used for proton/anti-proton PID. TOF PID extends the phase space coverage.

Efficiencies for (anti-)Protons

Net-proton Higher Moment

Net-proton results: All data show deviations below Poisson for $\kappa\sigma^2$ at all energies. Larger deviation at $\sqrt{s_{NN}} \sim 20$ GeV. **Non-monotonic behavior in central collision!** *X.F. Luo. CPOD2014*

Question: What will happen at even lower collision energy?

Expectation from Calculations

"Oscillating pattern" around the reference is expected.

Net-proton Higher Moment

Summary II

RHIC BES-I preliminary results show properties of matter changes around $\sqrt{s_{NN}} = 20$ GeV *i.e.* $\mu_B \sim 250$ MeV: non-monotonic energy dependence in net-proton high moments =>

Hint of QCD criticality!

Need high statistics data at $\sqrt{s_{NN}} \le 20$ GeV!

Outlook

More see talk by B. Jacak

Baryon Density Peaks at $\sqrt{s_{NN}} \sim 8 \text{GeV}$

Fix-Target Experiments for Critical Point

Exploring QCD Phase Structure

Nu Xu

Summary

- At high energy-nuclear collisions liquid-like quark-gluon plasma formed, η/s small
- 2) Current experiments cover $0 < \mu_B < 420$ MeV. Fix-target experiments will extend to much higher baryon region
- 3) RHIC BES-I results show properties of matter changes around $\sqrt{s_{NN}}$ = 20 GeV. *Hint of QCD criticality*
- 4) Need high statistics data at √s_{NN} ≤ 20 GeV: RHIC BES-II and fix-target experiments at √s_{NN} ≤ 8 GeV!

Thank you!

Nu Xu +1 510 289 8119 +86 15926295811 nxu@lbl.gov