

2018年初设备进场: 理论峰值每秒一千万亿(10¹⁵)次浮点运算(1 PFlops/s) 500+500TB 存储

▲ 格点量子色动力学
 ● 硅像素实验室探测器模拟
 ● 高能实验数据分析
 ● 唯象、流体模拟计算
 ● 大数据、深度学习
 ● ……

- 中科院近代物理研究所核物理专用GPU集群: 0.8 PFlops (2016年)
- 德国Bielefeld大学格点量子色动力学专用GPU集群: 0.5 PFlops (2012年)

QCD Medium Properties at Finite Baryon Density

- BES in High-Energy Nuclear Collisions

Nu Xu^(1,2)

Many Thanks to the Organizers!

⁽¹⁾ College of Physical Science & Technology, Central China Normal University, China ⁽²⁾ Nuclear Science Division, Lawrence Berkeley National Laboratory, USA

The QCD Phase Diagram and the Beam Energy Scan

(1) Introduction

(2) Recent Results from BES-I at RHIC

- i. Collectivity
- ii. Chirality
- iii. Criticality

(3) BES-II and Beyond

.....

STAR Detector System

Data Sets for BES-I Program

$\sqrt{{f S}_{f NN}}$ (GeV)	Events (10 ⁶)	Year	г
200	350	2010	$\widehat{\mathbf{U}}$
62.4	67	2010	ieV/o
54.4	1000	2017	() U
39	39	2010	entu
27	70	2011	lome
19.6	36	2011	se N
14.5	20	2014	sver
11.5	12	2010	Tran
7.7	4	2010	L

Particle Rapidity

- 1) Largest data sets versus collision energy
- 2) STAR: Large and homogeneous acceptance, excellent particle identification capabilities. Especially important for fluctuation analysis

STAR HFT Results: D⁰ Collectivity (v₂)

"These results suggest that charm quarks have achieved local thermal equilibrium with the medium created in such (200GeV Au+Au) collisions." STAR: Phys. Rev. Lett. 118, 212301(2017)

$\Lambda_{\rm C}/{\rm D}^0$ and ${\rm D}_{\rm s}/{\rm D}^0$ Ratios

RHIC: Need more data on heavy quark hadron, both charm- and bottom-hadrons, in order to extract the properties of the QGP!

PRC/9, 044905(09); S. GNOSN et al., PRD90, 054018(14)

NEW

"重离子物理前沿研讨会,上海,嘉定" January 15 - 17, 2018

$\sqrt{s_{NN}}$ = 27 GeV Au+Au Collisions

STAR: arXiv:1701.07065, PRC<u>96</u>, 44904(2017)

Bulk Properties at Freeze-outs

Chemical Freeze-out: (GCE)

- Weak temperature dependence
- Centrality dependence **µ**_B!
- LGT calculations indicate the Critical Region around $\mu_B \sim 300$ MeV?

Kinetic Freeze-out:

Central collisions => lower value of
 *T*_{fo} and larger collectivity β_T

- Stronger collectivity at higher energy, even for peripheral collisions

- ALICE: B.Abelev et al., PRL109, 252301(12); PRC88, 044910(2013).
- **STAR**: J. Adams, et al., NPA**757**, 102(05); PRC<u>96</u>, 44904(2017).
- S. Mukherjee: Private communications. August, 2012

- The K⁺/π ratio peaks at √s_{NN} ~ 8 GeV,
 K⁻/π ratio merges with K⁺/π at higher collision energy
- 2) Model: Baryon density peaks at $\sqrt{s_{NN}} \sim 8$ GeV
- 3) At $\sqrt{s_{NN}}$ > 8 GeV, pair production becomes important

STAR: 1701.07065; PRC<u>96</u>, 44904(2017) . J. Randrup and J. Cleymans, PR<u>C74</u>, 047901(2006)

The emergent properties of QCD matter

Collectivity

$$\partial_{\mu} [(\varepsilon + p)u^{\mu} u^{\nu} - pg^{\mu\nu}] = 0$$

$$\partial_{\mu} [s u^{\mu}] = 0$$

v₁ vs. Energy: Softest Point?

 Minimum at √s_{NN} = 10 GeV for net-proton and net-Λ, but net-Kaon data continue decreasing as energy decreases

- At low energy, or in the region where the net-baryon density is large, repulsive force is expected, v₁ slope is large and positive!
- 3) Softest point only for baryons?
- 4) Need model to explain!
- M. Isse, A. Ohnishi et al, PR <u>C72</u>, 064908(05)
- Y. Nara, A. Ohnishi, H. Stoecker, PRC94, 034906(16), arXiv: **1601.07692**

v₁ vs. Energy: Softest Point?

The emergent properties of QCD matter

Criticality

Status on Predictions

Lattice QCD:

rrrrr

- 1) Fodor and Katz, JHEP 0404,050 (04) (μ^{E}_{B}, T_{E}) = (360, 162) MeV (Re.)
- 2) Gavai and Gupta, NPA 904, 883c (13) (μ^{E}_{B}, T_{E}) = (279, 155) MeV (Taylor)
- 3) F. Karsch (μ^{E}_{B}/T_{E} >2, CPOD2016)

DSE:

- 1) Y. X. Liu, et al., PRD90, 076006(14) $(\mu^{E}_{B}, T^{E}) = (372, 129) \text{ MeV}$
- H.S. Zong et al., JHEP 07, 014(14) (μ^E_B, T_E)= (405, 127) MeV
- C.S. Fischer et al., PRD90, 034022(14) (μ^E_B, T^E) = (504, 115) MeV

$\mu_{B}^{E} = 300 \sim 504 \text{ MeV}, T_{E} = 115 \sim 162 \text{ MeV}, \mu_{B}^{E} / T_{E} > 2.5$

Expectation from Model Calculations

 $\begin{array}{c|c}
 & \frac{\kappa_4}{\langle N \rangle} \\
 & & baseline \\
 & & \sqrt{s} \\
 & 20 & 200 \\
\end{array}$

Characteristic "Oscillating pattern" is expected for the QCD critical point but *the exact shape depends* on the location of freeze-out with respect to the location of CP
Critical Region (CR)

M. Stephanov, *PRL107*, 052301(2011)
V. Skokov, Quark Matter 2012
J.W. Chen, J. Deng, H. Kohyyama, arXiv: 1603.05198, Phys. Rev. <u>D93</u> (2016) 034037

Model Expectation II

- 1) Both attractive and repulsive forces are needed to describe the criticality
- 2) This model might work for Liquid-gas CP, but will not work for QCD critical point due to wrong dof

Higher Moments and Criticality

- Higher moments of conserved quantum numbers:
 Q, S, B, in high-energy nuclear collisions
- 2) Sensitive to critical point (ξ correlation length):

$$\left\langle \left(\delta N \right)^2 \right\rangle \approx \xi^2, \ \left\langle \left(\delta N \right)^3 \right\rangle \approx \xi^{4.5}, \ \left\langle \left(\delta N \right)^4 \right\rangle \approx \xi^7$$

3) Direct comparison with calculations at any order:

$$S\sigma \approx \frac{\chi_B^3}{\chi_B^2}, \qquad \kappa\sigma^2 \approx \frac{\chi_B^4}{\chi_B^2}$$

 Extract susceptibilities and freeze-out temperature. An independent/important test of thermal equilibrium in heavy ion collisions.

References:

- STAR: *PRL*105, 22303(10); *ibid*, <u>112</u>, 032302(14)
- S. Ejiri, F. Karsch, K. Redlich, *PLB633*, 275(06) // M. Stephanov: *PRL*102, 032301(09) // R.V. Gavai and S. Gupta, *PLB696*, 459(11) // F. Karsch et al, *PLB695*, 136(11),
- A. Bazavov et al., PRL109, 192302(12) // S. Borsanyi et al., PRL111, 062005(13) // V. Skokov et al., PRC88, 034901(13)
- PBM, A. Rustamov, J. Stachel, arXiv:1612.00702

- 1) The results of net-Q and net-Kaon show flat energy dependence.
- 2) Net-p shows non-monotonic energy dependence in the most central Au+Au collisions starting at $\sqrt{s_{NN}} < 27$ GeV!

Net-proton Higher Moment

- 1) Flat energy dependence for 70-80% peripheral collisions
- Non-monotonic behavior in the most central 0-5%, and 5-10% collisions. Net-p follow protons, especially at lower collision energies

STAR Data: X.F. Luo, CPOD2014, QM2015

No Model Reproduces the 'Attraction'!

At $\sqrt{s_{NN}} \le 10$ GeV: Data: $\kappa\sigma^2 > 1!$ Model: $\kappa\sigma^2 < 1!$ All models: suppress higher order net-proton fluctuations (UrQMD, AMPT, HRG and JAM do not reproduce data)

- 1) Z. Feckova, J. Steonheimer, B. Tomasik, M. Bleicher, 1510.05519, PR<u>C92</u>, 064908(15)
- 2) X.F. Luo et al, NP A931, 808(14); P.K. Netrakanti et al., NP A947, 248(16); P. Garg et al. Phys. Lett. B726, 691(13)
- 3) Baryon mean-field (attractive): Shu He et al., Phys. Lett. B762, 296(2016).
- 4) Proton clusters: A. Bzdak, V. Koch, V. Sokokov, Eur. Phys. J., C77, 288(2017) Interesting but unfinished, needs include dynamic effects in HIC.

The emergent properties of QCD matter

BES-II & Beyond

2019-2020: BES-II at RHIC

√S _{NN} (GeV)	Events (10 ⁶)	BES II / BES I	Weeks	μ _B (MeV)	T _{CH} (MeV)
200	350	2010		25	166
62.4	67	2010		73	165
54.4	1200	2017			
39	39	2010		112	164
27	70	2011		156	162
19.6	400 / 36	2019-20 / 2011	3	206	160
14.5	300 / 20	2019-20 / 2014	2.5	264	156
11.5	230 / 12	2019-20 / 2010	5	315	152
9.2	160 / 0.3	2019-20 / 2008	9.5	355	140
7.7	100 / 4	2019-20 / 2010	14	420	140

Precision measurements: map the QCD phase diagram $200 < \mu_B < 420 MeV$

CBM Phase-0 Exp: eTOF at STAR

Install, commission and use 10% of the CBM TOF modules, including the read-out chains at STAR, starting in 2019

CBM participating in RHIC Beam Energy BES-II in 2019-2020:

 Complementary to part of CBM's physics program: √s_{NN} = 3, 3.6, 3.9, 4,5, 7.7 GeV (750 ≥ μ_B ≥ 420 MeV) especially for *B*- & *s-hadrons* production and fluctuations

FAIR construction started, beam on target in 2025!

Facility for Antiproton & Ion Research: FAIR

CBM Experiment at FAIR

CEE at HIAF (2023)

"重离子物理前沿研讨会,上海,嘉定" January 15 - 17, 2018

BERKELEY

CEE 概念性设计

CEE 的总体设计

Observables: v_1/v_2 /high-moment for light nuclei production and protons

Search for the QCD Critical Point

- RHIC BES-II: dramatically reduce the errors!
- CBM/RHIC FXT/CEE Experiments (2.5 < √s_{NN} < 8 GeV) : Key region for Critical Point search

STAR Data: X.F. Luo et al, CPOD2014, QM2015; PRL112 (2014) 32302

Acknowledgements

P. Braun-Munzinger, X. Dong, S. Esumi, S. Gupta, XG. Huang, F. Karsch, V. Koch, JF. Liao, *F. Liu*, *F. Lu*, XF. Luo, B. Mohanty, S. Mukherjee, T. Nonaka, K. Redlich, HG. Ritter, *M. Shao*, SS. Shi, M. Stephanov, J. Stroth, *XM. Sun*, *ZY. Sun*, N. Yu, *Y. Wang*, *ZG. Xiao*, *L. Zhao*, PF. Zhuang

Blue: Theory // Red: Exp., high moment // XxYy: project leader at CEE

Thanks for your attention!