Grand Challenge Plan for Evolutionary Integration of
Objectivity into Software Deployed at the RHIC
Computing Facility

David Malon, Douglas Olson, Craig Tull

17 November 1997

Preface

While the HENP Grand Challenge project expects to develop an architecture for efficient
data handling whose implementation does not require a specific commercial database pack-
age, it is the intention of the project to deliver software consistent with RHIC’s long-term
computing plans. For this reason the project has made an affirmative commitment to
integration with Objectivity database software.

This note describes Grand Challenge plans for evolutionary use of Objectivity in the
time frame of the RHIC mock data challenges (summer 1998). It also outlines how the
proposed approach supports fallback positions that would use Objectivity to a reduced
degree, or, if necessary, not at all.

Initial Objectivity Integration

There are several areas in which the presence or absence of Objectivity could make a
substantial difference in the Grand Challenge architecture:

e how data are stored (instantiation of data model);
e how analysis programs access events (event iterator/analysis code interface);

e how storage management services make data available to analysis codes (storage man-
ager/event iterator interface);

e how interesting events are identified and requested (Tag database).
The parenthetical clauses in the list above indicate the correspondence of each of these

items to components of the Grand Challenge architecture. Our plans for use of Objectivity
in each of these areas are described briefly below.



How Data Are Stored

The initial integration of Objectivity into STAF will mirror current DIO services, and will
involve implementation of three persistent classes, corresponding to streams, datasets, and
tables.

The user interface to Objectivity I/O will be identical to that currently supported in
DIO (e.g., open, close, getEvent, putEvent). Each physics event will, initially, be stored
as a separate dataset in the STAF (TDM) sense, with the usual STAF representation of a
dataset as a collection of tables and other (nested) datasets. While this approach does not
take significant advantage of many of the capabilities of object databases, it does provide
a natural migration path for existing codes, and allows the fallback position of simply
swapping in dioStreams for Objectivity I/O streams (oioStreams).

How analysis programs access events

In the Grand Challenge architecture, the result of a query execution request is an iterator
over the collection of events satisfying the query. Invoking something akin to a next()
method on the iterator returns the next qualifying event.

In STAF, a physics event will be represented in memory as an object of type tdmDataset
(see above). If the STAF wrapper for this iterator is written, then. to return a tdmDataset™,
user code will see no difference between events coming from an xdf file containing event
datasets in XDR format, and events coming from Objectivity. Internally, the (Storage
Access Enhanced) iterator should not be highly dependent upon Objectivity:

¢ Without Objectivity, the iterator would invoke getEvent() on a dioStream associated
with the xdf file containing the event.

e With Objectivity, the iterator would invoke getEvent() identically, on a persistent
oioStream object containing the persistent Event dataset.

How storage management services make data available to analysis codes

The Storage Manager makes data available to analysis programs one cell at a time. In
the initial implementation, the unit of storage transfer will be a file—a database with
Objectivity, an xdf file without. In either case, for each cell, the Storage Manager provides
the Storage Access Enhanced Iterator with a list of Event Identifiers corresponding to
qualifying events in the cell.

We expect that the primary dependence on Objectivity in this area will be in the rep-



resentation of Event Identifiers. We are currently exploring approaches to Event Identifier
representation that will, without unduly sacrificing performance, minimize implementation
differences between identifiers corresponding to persistent objects stored by Objectivity and
identifiers corresponding to datasets stored in xdf files.

How interesting events are identified and requested

Physicists will identify events of interest by issuing a selection query, which will be an-
swered approximately by consulting an in-memory index, and exactly at execution time by
consulting a Tag database containing, for each event, the most commonly queried attributes.

Our plan is to build the Tag database as a disk-resident Objectivity database of tag
attributes for each event, with a corresponding Event Identifier (one example might be a
d_Ref) pointing to the corresponding event. If we need to scale back our use of Objectivity
in the time frame of the mock data challenges, we hope to build the Tag database using
Objectivity in any case; only the Event Identifiers would be different. If Objectivity were
completely unavailable, the Tag database would have the same logical structure, but would
be stored, possibly in n-tuple format, in ordinary Unix files.

We foresee no difference in the in-memory index with or without Objectivity.

Implications for interface to HPSS

Because the Storage Manager will, in its initial incarnation, retrieve entire files from HPSS,
there is no substantial Objectivity dependence in its implementation. The primary require-
ment placed by Objectivity on the Storage Manager is that Objectivity’s catalog be notified
(e.g., via oochangedb -catalogonly) of the location of any databases imported from tertiary
storage.



