Computer Science Research and Development Departr Computing Sciences Directorate, LBNL

Storage Management and Data Mining Problems in High Energy Physics Applications

Arie Shoshani Doron Rotem Henrik Nordberg

(http://www.lbl.gov/DM.html)

Scientific Data Management R&D Group Lawrence Berkeley National Laboratory

June 26, 1997

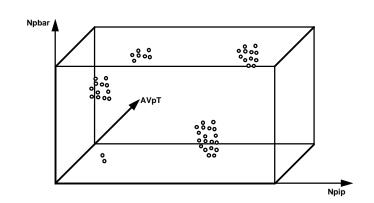
Data Organization and Indexing of Large High Energy Physics Data

Computer Science Research and Development Dep Computing Sciences Directorate, LBNL

Collaboration	# members /institutions	Date of first data	# events/year	total data volume/year-TB
STAR	350/35	1999	$10^{7} - 10^{8}$	300
PHENIX	350/35	1999	10 ⁹	600
BABAR	300/30	1999	10^{9}	80
CLAS	200/40	1997	10 ¹⁰	300
ATLAS	1200/140	2004	10 ⁹	2000

STAR: Solenoidal Tracker At RHIC RHIC: Relativistic Heavy Ion Collider

Data Organization for Efficient Retrieval of Very Large Datasets


Computer Science Research and Development Depar Computing Sciences Directorate. LBNL

- General problem area
 - how to cluster data in physical storage according to expected access patterns
- Observation
 - on parallel disks: distribute clusters to maximize parallel reads
 - on tape storage: keep cluster together to minimize tape mounts

HENP Mass Storage Access

Computer Science Research and Development Department Computing Sciences Directorate, LBNL

- After event reconstruction, event properties (features) are extracted: called "level 1 n-tuples"
- Number of properties is large (50-100)
- · e.g. momentum, no. of pions, transverse energy
- · Multidimensional space is highly skewed and sparse
- Need to access events based on partial properties specification (usually ranges)
- <u>Problem</u>: re-organize event clusters on mass storage according to the property space

Clusters in the M-Dim property space

EXAMPLE OF EVENT PROPERTY VALUES

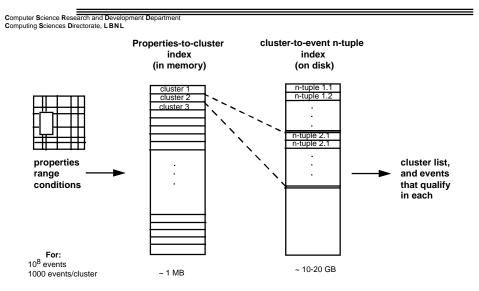
Computer Science Research and Development Department Computing Sciences Directorate, LBNL

Computer Science Research and Development Department Computing Sciences Directorate, LBNL

I event 1	I Np(3) 24
I N(1) 9965	I Npbar(1) 94
I N(2) 1192	I Npbar(2) 12
I N(3) 1704	I Npbar(3) 24
I Npip(1) 2443	I NSEC(1) 15607
I Npip(2) 551	I NSEC(2) 1342
I Npip(3) 426	I NSECpip(1) 638
I Npim(1) 2480	I NSECpip(2) 191
I Npim(2) 541	I NSECpim(1) 728
I Npim(3) 382	I NSECpim(1) 728
I Nkp(1) 229	I NSECkp(1) 3
I Nkp(2) 30	I NSECkp(2) 0
I Nkp(3) 50	I NSECkm(2) 0
I Nkm(1) 209	I NSECkm(2) 0
I Nkm(1) 209	I NSECp(1) 524
I Nkm(1) 209	I NSECkm(2) 0

R AVpT(1) 0.325951 R AVpT(2) 0.402098 R AVpTpip(1) 0.300771 R AVpTpip(2) 0.379093 R AVpTpim(1) 0.298997 R AVpTpim(1) 0.421875 R AVpTkp(2) 0.564385 R AVpTkp(2) 0.564385 R AVpTkm(1) 0.435554 R AVpTkm(1) 0.663298 R AVpTp(2) 0.663298 R AVpTp(2) 0.77526 R AVpTp(2) 0.777526 R AVpTp(2) 0.777526 R AVpTp(2) 0.777526 I NHIGHpT(1) 205 I NHIGHpT(2) 7 I NHIGHpT(2) 7 I NHIGHpT(4) 0 I NHIGHpT(5) 0 5

6


54 Properties, eventually 10⁸ events

Size of HENP datasets on tape

Computer Science Research and Development Departmen Computing Sciences Directorate, LBNL

- STAR experiment
 - 10⁸ events over 3 years
 - 1-10 MB per event: reconstructed data (DST tapes)
 - 10¹⁵ total size
 - 10,000 tapes per year (30 MB tapes)

Manage Cluster Access

Computer Science Research and Development Department Computing Sciences Directorate, LBNL

- Index size
 - property space: 10⁸ events x 200 bytes = 20 GB
 - index space: 10⁵ clusters x 100 bytes = 10 MB (assume 1000 events/cluster)
- Problem
 - how to organize property space index

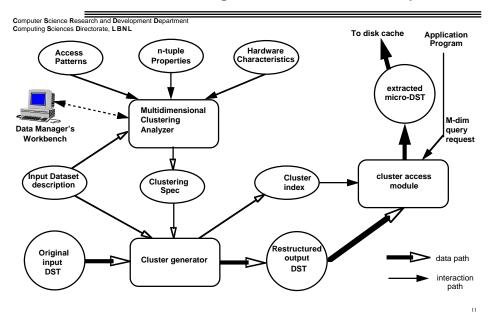
Main Tasks

Computer Science Research and Development Department Computing Sciences Directorate, LBNL

Discover event clusters

- based on natural distribution Data Mining
- based on access patterns consult physicists
- simulate performance data manager's workbench

Manage cluster access


 given a query, determine clusters to access, use multi-dimensional indexes to select events that qualify

Reorganize DST tapes according to clusters

- long process done initially, then rarely
- flow control restart after interruption

Cache management

 determine if in cache, which incremental clusters to cache, which clusters to purge from cache

Events Clustering and Access: Main Components

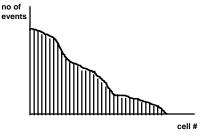
Discover events clusters

12

Computer Science Research and Development Departme Computing Sciences Directorate, LBNL

- Top down approach
 - partition each dimension into "bins" (e.g. 1-2 GEV, ..., 1-3 pions, ...)
 - select subset of dimensions based on physicist's experience
 - analyze which events fall into the same "cell" (i.e. m-dim rectangles formed by the bins)
 - eliminate empty cells
 - combine cells to form similar size clusters
- Assumption
 - most queries are "range queries"

Discover events clusters


Computer Science Research and Development Departr Computing Sciences Directorate, LBNL

- Bottom up approach
 - select a subset of the dimensions (using physicist's hints initially)
 - partition space on each dimension successively
 - determine suitability of various indexing methods to high dimensionality and skewed distributions:
 K-D trees, Quad-trees, R-trees,...
 - Iterate for other dimension combinations
- Consult physicists
 - do cluster correlations matter?
 - get additional hints on preferred dimensions

Top Down Cell Management

Computer Science Research and Development Departme Computing Sciences Directorate, LBNL

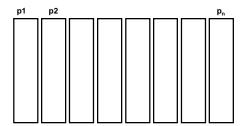
- Assume: 7 dimensions, 10 bins each
 - -- Number of cells: 107, 4 byte counters
 - -- Number of bytes: 4x107, 40 MB
- For e.g. small dataset 97% of cells are empty:
- -- store only populated cells
- -- use hash tables to locate existing cells
- -- use 2 bytes for bin_id per property: ratio for p% full is: 200/ (n+2)p
- -- No of bytes: for 7 dim, 3% => 5.4 MB
- Sort cells by size (number of events)

14

Cluster Identification

Computer Science Research and Development Departm Computing Sciences Directorate, LBNL

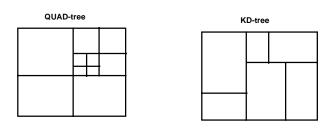
- · sort cells by size
- · pick larger cell to start forming a cluster
- find all neighbors of "Manhattan distance" equal to 1
- · include cells above a threshold
- iterate for all cells in cluster
- when no more cells above threshold, pick larger remaining cell and start forming a new cluster
- Display cluster distributions


П			١.		•
			۰.		
			· · ·	•	
			-	•	
Π	•				

16

indexing over all properties

Computer Science Research and Development Departmen Computing Sciences Directorate, LBNL


- Assume 150 properties
 - Any combination of range queries
 - want to compute number of events
- possible solution: vertically partitioned file
 - idea: touch only properties in queries
 - each partition 10⁸ x 4 bytes = 400 MB per partition
 - too expensive in space and time

indexing over all properties

Computer Science Research and Development Department Computing Sciences Directorate, LBNL

- other possible solutions
 - partitioning MD space (KD-trees, n-QUAD-trees, ...)
 - for high dimensionality either fanout or tree depth too large
 - e.g. symmetric n-QUAD-trees require 2^{150 fanout}
 - non-symmetric solutions are order dependent

Bit-Sliced indexing

Computer Science Research and Development Departmen Computing Sciences Directorate, LBNL

- partition each property into bins
- for each bin generate a bit vector
- compress each bit vector (run length encoding)

. .

property n								
0	0	000010000000000000000000000000000000000	0	1	0	0	0	
0	0	0	0	0	1	0	D	
0	0	0	0	1	0	0	þ	
0	0	0	0	1	0	0	D	
1	0	1	0	0	0	0	D	
0	0	0	1	0	0	0	D	
0	0	0	00001110111011	0	0	000000000000000000000000000000000000000	D	
0	0	0	1	0	0	0	D	
0	0	0	0	0	0	0	D	
0	0	0	1	0	0	0	D	
0	0	0	1	0	0	0	D	
0	0	0	1	0	0	0	D	
0	0	0	0	0	0	1	0	
0	0	0	1	0	0	0	0	
000010000000000000000000000000000000000	000000000000000000000000000000000000000	0	1	10110000000000000	010000000000000000000000000000000000000	0	000000000000000000000000000000000000000	

proporty p

17

18

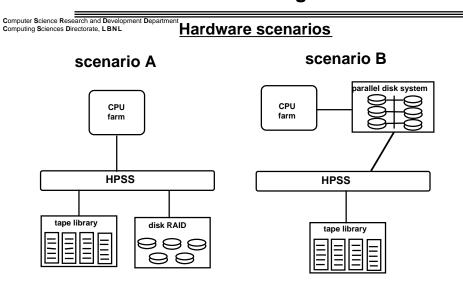
Compression method

Computer Science Research and Development Departmen Computing Sciences Directorate, LBNL

Compressed: 12, 16, 1016,1017,1025,2025

Advantage:

Can perform: AND, OR, COUNT operations on compressed data


Bit-Sliced indexing

19

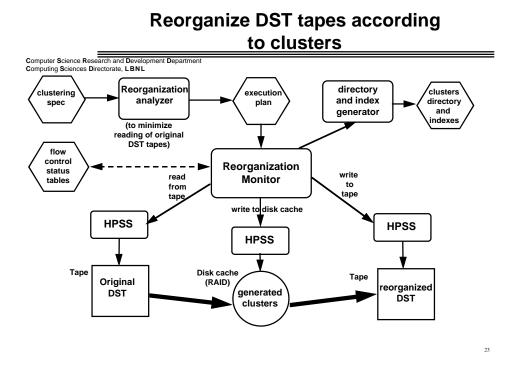
20

Computer Science Research and Development Departmer Computing Sciences Directorate, LBNL

- Estimated size
 - 100 properties X 10 bins X 10^8 bits = 10^{11} bits
 - compression factor (avg run length) = 1000
 - total size = 10⁸ bits ~ 10 MB
- Advantage
 - only bit partitions need to be accessed (multiple bins per property are "or"ed, result for each property requested are "and"ed)
 - operations can be performed on compressed bit-slices
 - compressed bit-slices can be processed in paprallel
- Disadvantage
 - results can be given on bin boundaries only

Cache Management

Cache Management Issues


21

22

Computer Science Research and Development Departmen Computing Sciences Directorate, LBNL

Scenario A

- RAID more expensive than a Parallel Disk System (factor 2-3)
- but, rely on HPSS to manage disk
- storage management simplified
- Scenario B
 - a Parallel Disk System is cheaper, does not depend on RAID vendor
 - but, need to manage disk allocation
 - has control over placement of events on cache
- Planned initial pilot
 - Scenario A under NERSC

Open Problems

24

Computer Science Research and Development Departmer Computing Sciences Directorate, LBNL

- Discover event clusters in sparse high M-dim space given analyst guidance on bining
- Analyze the natural clustering of events by properties
- develop an efficicient index on high M-dim space
- develop a cache mangement policy for job mixes
- Simulate and test the effect of distributing events on disk cache by blocks vs. one event per disk
- The benefit of partial event data replication to accommodate conflicting access patterns

25

Computer Science Research and Development Departr Computing Sciences Directorate, LBNL

- The ability of HPSS to store files on tapes according to external specifications
- The ability of HPSS to perform "partial file reads" from tape storage
- The possibility and effectiveness of parallel tape management under HPSS
- The benefit of partial event data replication to accommodate conflicting access patterns