Name of person responsible: Arie Shoshani and Alex Sim

Component Name: Query Monitor

 Component Description:

The Query Monitor (QM) is one of three main components of the Storage Manager module (the Query Estimator, the Query Monitor, and the Cache Manager). It is responsible keeping track of which queries are executing at any time, what files are cached on behalf of each query, what files were purged but are still in cache, and what files still need o be cached. All the EXECUTE query requests that are submitted to the Query Estimator (QE) are passed to the QM for execution, after the QE uses its indexes to determine the set of files and event within each file that qualify for each query. We use the following notation for what the QE passs to the QM for each EXECUTE query request: UID, QID {FID {EID}}. The logic flow of the QM is explained below.

The QM actions in response to a query execution request is as follows. First, it adds the request to the end of query request queue. Then it checks if the “cache full” flag is “full”. If the cache if full, it goes to a wait-state. Otherwise, the QM sends a request to the Policy Module: “what file should be cached next?” When a response is given, it sends a message to Cache Manager (CM). If CM responds that it can fulfill the request, it marks the file as “scheduled to be cached”, otherwise it marks the “cache full” flag as “full. In the case that the CM can fulfill the request, it informs the QM that it actually cached the file, and the QM notifies all the Event Iterators for queries waiting for this file that the file was cached. It also passes each Event Iterator the set of OIDs that qualify for its query. The QM also handles exception conditions, for cases when the QM or the Event Iterators do not respond.

Each Event Iterator is expected to inform the QM when it is done with reading a file. Time-out mechanisms check that Event Iterators are alive, so that a file is not left in cache forever if an Event Iterator craches or malfunctions. When a message from an Event Iterator gets to the QM saying that it is done with this file, the QM checks if other queries are using this file. If none, it request the CM to remove the file. (Incidentally, the CM marks this file for removal, but does not actually purge the file till the space is needed. This is so that in case the same file is needed again, and it is still in cache it does not have to be re-staged). In addition, the QM marks the “cache full” flag is “not full” and sends a request to the Policy Module for next file to be cached.

Date of delivery:

April 15, 1998

Description of interfaces to other components:
The interface to the Query Estimator, the Event Iterator, and the Cache Manager are via CORBA object defined in IDL. The interface to the Policy Module is via inter-process communication (this is because the Query Monitor and the Policy Module need access to the same data structures).

Description of necessary external resources:

Compiler: SOLARIS C++: SunPro CC 4.2 or later

CORBA: Orbix 4.0 or later

