

Diffraction in the Dipole Cascade Picture

Leif Lönnblad

Department of Theoretical Physics Lund University

ISMD07 Berkeley 07.08.05

Work done with Emil Avsar & Gösta Gustafson

Dipoles & Diffraction

Leif Lönnblad

1

Outline

Introduction

MC implementation of Mueller Dipoles

Energy–momentum conservation Modeling the proton The Dipole Swing Parameters

Diffractive and Elastic Scattering

Averaging and Squaring Lorentz Frame Independence Confinement effects Results

Leif Lönnblad

Mueller Dipole model

 Evolution in rapidity of dipoles in transverse coordinate space.

Emission probability

- ► Eg. γ^{*}γ^{*}, each γ^{*} splits into qq̄ dipoles which evolve through dipole splitting ⇔ gluon emission.
- Interaction through dipole-dipole scattering probability

$$f = \frac{\alpha_s^2}{2} \left\{ \log \left[\frac{|\boldsymbol{x}_1 - \boldsymbol{x}_2| \cdot |\boldsymbol{y}_1 - \boldsymbol{y}_2|}{|\boldsymbol{x}_1 - \boldsymbol{y}_2| \cdot |\boldsymbol{y}_1 - \boldsymbol{x}_2|} \right] \right\}^2$$

- Equivalent to LO BFKL
- Easy to include multiple dipole-dipole scatterings with scattering amplitude

$$T = 1 - e^{-\sum_{ij} f_{ij}}$$

Less easy to include saturation in the evolution

4

Energy–momentum conservation Modeling the proton The Dipole Swing

MC implementation of Mueller Dipoles

- First done by Salam: OEDIPUS
- Dipole splitting is divergent for small dipole sizes
- Final result independent of cutoff because small dipoles has small interaction probability
- Problem for MC implementation too many dipoles

Energy-momentum conservation Modeling the proton The Dipole Swing

The [insert name here] MC implementation

- Small size dipoles correspond to high $p_{\perp} \propto 1/r$ gluons
- We may have infinitely many small virtual dipoles but there is not enough energy for all of them to interact.
- ► Our MC tracks each parton: y, x, p⊥
- Require each emission to be ordered in p₊ and p₋
- Take into account recoils
- Neighboring dipoles are correlated

Leif Lönnblad

- ► A right-moving dipole with negative p₋ must collide with left-moving dipole with enough positive p₋ so that all partons can be put on-shell (+vv.)
- Energy-momentum conservation gives a dynamical cutoff for small dipoles in the evolution
- Also non-interacting (virtual) side chains takes energy, energy conservation effects are somewhat over estimated.
- Hopefully, the MC can be used to also study final-state properties

Modeling the proton

- The virtual photon wave functions are well known
- How do we describe the initial dipole state of a proton?
- We have at three valence quarks \Rightarrow three dipole ends.
- Three independent dipole didn't work very well
- ► Three (correlated) dipoles in △-geometry worked very well.
- Just one parameter, R, Gaussian width for the position of the "valence gluons"

The Dipole Swing

- Each dipole carries a colour index
- ► Two dipoles with the same index are allowed to reconnect $(x_1, y_1), (x_2, y_2) \rightarrow (x_1, y_2), (x_2, y_1)$ with probability

$$\propto \frac{(\pmb{x}_1 - \pmb{y}_1)^2(\pmb{x}_2 - \pmb{y}_2)^2}{(\pmb{x}_1 - \pmb{y}_2)^2(\pmb{x}_2 - \pmb{y}_1)^2}$$

- Coefficient adjusted so that the swing saturates
- Can be interpreted as gluon exchange, but also as modeling the quadrupole as two combinations of dipoles
- This gives saturation in the evolution (the number of dipoles are not decreased, but smaller dipoles are preferred).

MC	implementation	of Mueller Dipoles

The size of the proton, R.

Λ_{QCD} in the running coupling

- The strength of the dipole swing
- The quark masses for the photon wave function

hep-ph/0503181, hep-ph/0610157, hep-ph/0702087

Leif Lönnblad

MC	implementat	ion (of Muell	er Dipoles	

- ▶ The size of the proton, *R*.
- Λ_{QCD} in the running coupling
- The strength of the dipole swing
- The quark masses for the photon wave function

hep-ph/0503181, hep-ph/0610157, hep-ph/0702087

Leif Lönnblad

MC	implementation of Mueller Dipoles

- ▶ The size of the proton, *R*.
- Λ_{QCD} in the running coupling
- The strength of the dipole swing
- The quark masses for the photon wave function

hep-ph/0503181, hep-ph/0610157, hep-ph/0702087

	[^] Modeling the proton
MC implementation of Mueller Dipoles	The Dipole Swing
	Parameters

Dipoles & Diffraction

Leif Lönnblad

	[^] Modeling the proton
MC implementation of Mueller Dipoles	The Dipole Swing
	Parameters

Dipoles & Diffraction

	[^] Modeling the proton
MC implementation of Mueller Dipoles	The Dipole Swing
	Parameters

Lund University

SIG

Averaging and Squaring _orentz Frame Independence Confinement effects

- ► The total cross section: $\frac{d\sigma_{\text{tot}}}{d^2b} = 2\langle 1 e^{-F} \rangle_{RL}$ where $F = \sum_{ij} f_{ij}$ is *b*-dependent
- Should be independent of Lorentz frame
- In the end we want to describe final states.
 Let's start with some simple semi-inclusive observables.
- We use the Good & Walker picture of diffraction, using the dipole states as eigenstates of the diffraction.
- Elastic cross section: $\frac{d\sigma_{\rm el}}{d^2b} = \langle 1 e^{-F} \rangle_{RL}^2$
- Should also be frame-independent

Averaging and Squaring _orentz Frame Independence Confinement effects

- ► The total cross section: $\frac{d\sigma_{\text{tot}}}{d^2b} = 2\langle 1 e^{-F} \rangle_{RL}$ where $F = \sum_{ij} f_{ij}$ is *b*-dependent
- Should be independent of Lorentz frame
- In the end we want to describe final states. Let's start with some simple semi-inclusive observables.
- We use the Good & Walker picture of diffraction, using the dipole states as eigenstates of the diffraction.
- Elastic cross section: $\frac{d\sigma_{el}}{d^2b} = \langle 1 e^{-F} \rangle_{RL}^2$
- Should also be frame-independent

Averaging and Squaring Lorentz Frame Independence Confinement effects

Diffractive cross sections

$$\begin{aligned} \frac{d\sigma_{SD}^{R}}{d^{2}b} &= \langle \langle 1 - e^{-F} \rangle_{L}^{2} \rangle_{R} - \langle 1 - e^{-F} \rangle_{R,L}^{2} \\ \frac{d\sigma_{SD}^{L}}{d^{2}b} &= \langle \langle 1 - e^{-F} \rangle_{R}^{2} \rangle_{L} - \langle 1 - e^{-F} \rangle_{R,L}^{2} \\ \frac{d\sigma_{DD}}{d^{2}b} &= \langle (1 - e^{-F})^{2} \rangle_{R,L} - \langle \langle 1 - e^{-F} \rangle_{L}^{2} \rangle_{R} - \langle \langle 1 - e^{-F} \rangle_{R}^{2} \rangle_{L} \\ &+ \langle 1 - e^{-F} \rangle_{R,L}^{2}. \end{aligned}$$

Not frame-independent. And it shouldn't be.

Dipoles & Diffraction

Leif Lönnblad

- > Assuming a total rapidity interval $Y = \log s$, evolving left-moving dipole system to y and right-moving to Y - y
- $\bullet \sigma_{diff} / \sigma_{tot}$ only gives the probability to have a gap at y, not how large the gap is.
- Looking at hard diffraction in DIS we want to measure $\sigma_{diff}(m_X)/\sigma_{tot}$, where m_X is the mass of the diffracted photon.
- We evolve the proton to $y_p = \ln W^2 / m_x^2$
- We evolve the photon to $y_{\gamma^*} = \ln \max(z, 1-z) m_x^2 / p_\perp$

$$\sigma_{diff}(m_X) = \int^{\ln m_X^2} \frac{d\sigma_{diff}}{d\ln m_X^2} d\ln m_X^2$$

- But first we must make sure σ_{tot} is frame-independent
- Not a big problem for pp. Difficult for $\gamma^* p$
- Important to treat gluon emission and dipole-dipole scattering in the same way.
- Energy momentum conservation important
- Running \(\alpha_S\) is important
- But most of all...

- But first we must make sure σ_{tot} is frame-independent
- Not a big problem for *pp*. Difficult for γ^{*}*p*
- Important to treat gluon emission and dipole-dipole scattering in the same way.
- Energy momentum conservation important
- Running \(\alpha_S\) is important
- But most of all...

Lorentz Frame Independence Confinement effects Results

Confinement effects

- We have confinement effects in the initial proton
- We also had a naive suppression of large dipoles in the evolution, but nothing in the dipole–dipole interaction
- Taking away confinement in the evolution did not work
- Need to include confinement effect everywhere

Diffractive and Elastic Scattering

Confinement effects

$$f(\boldsymbol{x}_i, \boldsymbol{y}_i | \boldsymbol{x}_j, \boldsymbol{y}_j) = \frac{g^4}{8} (\Delta(\boldsymbol{x}_i - \boldsymbol{x}_j) - \Delta(\boldsymbol{x}_i - \boldsymbol{y}_j) - \Delta(\boldsymbol{y}_i - \boldsymbol{x}_j) + \Delta(\boldsymbol{y}_i - \boldsymbol{y}_j))^2$$

where $\Delta(\mathbf{r})$ is the Green's function given by

$$\Delta(\mathbf{r}) = \int \frac{d^2\mathbf{k}}{(2\pi)^2} \frac{\mathrm{e}^{i\mathbf{k}\cdot\mathbf{r}}}{\mathbf{k}^2}$$

This assumes a Coulomb potential. Let's instead use a Yukawa potential with M = 1/R

$$\int \frac{d^2\boldsymbol{k}}{(2\pi)^2} \frac{e^{i\boldsymbol{k}\cdot\boldsymbol{r}}}{\boldsymbol{k}^2 + M^2} = \frac{1}{2\pi} K_0(\boldsymbol{r} M)$$

$$egin{aligned} f_{ij} &
ightarrow rac{lpha_{s}^{2}}{2}igg(\mathcal{K}_{0}(|oldsymbol{x}_{i}-oldsymbol{y}_{j}|/R) - \mathcal{K}_{0}(|oldsymbol{x}_{i}-oldsymbol{x}_{j}|/R) - \mathcal{K}_{0}(|oldsymbol{y}_{i}-oldsymbol{y}_{j}|/R) + \mathcal{K}_{0}(|oldsymbol{x}_{j}-oldsymbol{y}_{i}|/R)igg)^{2} \end{aligned}$$

$$\frac{d\mathcal{P}}{dY} = \frac{\bar{\alpha}}{2\pi} d^2 \mathbf{z} \frac{(\mathbf{x} - \mathbf{y})^2}{(\mathbf{x} - \mathbf{z})^2 (\mathbf{z} - \mathbf{y})^2} = \frac{\bar{\alpha}}{2\pi} d^2 \mathbf{z} \left(\frac{\mathbf{x} - \mathbf{z}}{(\mathbf{x} - \mathbf{z})^2} - \frac{\mathbf{y} - \mathbf{z}}{(\mathbf{y} - \mathbf{z})^2} \right)^2.$$

The two terms comes from the integration

$$\int \frac{d^2 \mathbf{k}}{(2\pi)^2 i} \frac{\mathbf{k} e^{i\mathbf{k} \cdot \mathbf{r}}}{\mathbf{k}^2} = -\nabla \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \frac{e^{i\mathbf{k} \cdot \mathbf{r}}}{\mathbf{k}^2}$$

Again changing to a Yukawa potential

$$\frac{d\mathcal{P}}{dY} \rightarrow \frac{\bar{\alpha}}{2\pi} d^2 \mathbf{z} \left(\frac{1}{R} \frac{\mathbf{x} - \mathbf{z}}{|\mathbf{x} - \mathbf{z}|} K_1(\frac{|\mathbf{x} - \mathbf{z}|}{R}) - \frac{1}{R} \frac{\mathbf{y} - \mathbf{z}}{|\mathbf{y} - \mathbf{z}|} K_1(\frac{|\mathbf{y} - \mathbf{z}|}{R}) \right)^2$$
Same as before for $r \ll R$. Exponentially damped for $r \gg R$

Lorentz Frame Independence Confinement effects Results

Frame-independence of $\sigma_{\rm tot}^{pp}$

Lorentz Frame Independence Confinement effects Results

Frame-independence of $\sigma_{tot}^{\gamma^{\star} p}$

Results

- ► For the Tevatron we get $\sigma_{\rm el}/\sigma_{\rm tot} \approx \spadesuit. \heartsuit$
- ► Increases to ♠.♣♦ at the LHC
- ► Tevatron: ♠.♥♣
- Results for single/double diffraction in pp still to come

Lorentz Frame Independence Confinement effects Results

Diffractive excitation of γ^{\star} at HERA

Data has $m_N < 2.3 \text{ GeV}$

Diffractive and Elastic Scattering

Results

Diffractive excitation of γ^* at HERA

Dipoles & Diffraction

Summary

- We have a Monte Carlo implementation of Mueller Dipoles
- Key ingredients:
 - Energy-momentum conservation
 - Dipole swing
 - Simple proton model
 - Confinement effects
 - ... possibility to study final states
- Reasonable description of data:
 - Total cross sections for pp and γ^{*}p
 - Diffraction at HERA
 - Elastic scattering in pp
 - ...more to come

Diffraction in the Dipole Cascade Picture

Leif Lönnblad

Department of Theoretical Physics Lund University

ISMD07 Berkeley 07.08.05

Work done with Emil Avsar & Gösta Gustafson

Dipoles & Diffraction

Leif Lönnblad

Outline

Introduction

MC implementation of Mueller Dipoles

Energy–momentum conservation Modeling the proton The Dipole Swing Parameters

Diffractive and Elastic Scattering

Averaging and Squaring Lorentz Frame Independence Confinement effects Results

