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Mueller Dipole model

◮ Evolution in rapidity of dipoles in transverse coordinate
space.
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ᾱ

2π
d2r2

r2
01

r2
02 r2

12

Dipoles & Diffraction 3 Leif Lönnblad Lund University



Introduction
MC implementation of Mueller Dipoles

Diffractive and Elastic Scattering
ˇ

◮ Eg. γ⋆γ⋆, each γ⋆ splits into qq̄ dipoles which evolve
through dipole splitting ⇔ gluon emission.

◮ Interaction through dipole–dipole scattering probability

f =
α2

s

2

{

log
[

|x1 − x2| · |y1 − y2|

|x1 − y2| · |y1 − x2|

]}2

◮ Equivalent to LO BFKL
◮ Easy to include multiple dipole–dipole scatterings with

scattering amplitude

T = 1 − e−
P

ij fij

◮ Less easy to include saturation in the evolution
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Energy–momentum conservation
Modeling the proton

ˇ
The Dipole Swing

MC implementation of Mueller Dipoles

◮ First done by Salam: OEDIPUS
◮ Dipole splitting is divergent for small dipole sizes
◮ Final result independent of cutoff because small dipoles

has small interaction probability
◮ Problem for MC implementation — too many dipoles
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The [ insert name here] MC implementation

◮ Small size dipoles correspond to high p⊥ ∝ 1/r gluons
◮ We may have infinitely many small virtual dipoles but there

is not enough energy for all of them to interact.
◮ Our MC tracks each parton: y , x , p⊥

◮ Require each emission to be ordered in p+ and p−

◮ Take into account recoils
◮ Neighboring dipoles are correlated
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Energy–momentum conservation
Modeling the proton

ˇ
The Dipole Swing

◮ A right-moving dipole with negative p− must collide with
left-moving dipole with enough positive p− so that all
partons can be put on-shell (+vv.)

◮ Energy-momentum conservation gives a dynamical cutoff
for small dipoles in the evolution

◮ Also non-interacting (virtual) side chains takes energy,
energy conservation effects are somewhat over estimated.

◮ Hopefully, the MC can be used to also study final-state
properties
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ˇ
The Dipole Swing

Modeling the proton

◮ The virtual photon wave functions are well known
◮ How do we describe the initial dipole state of a proton?
◮ We have at three valence quarks ⇒ three dipole ends.
◮ Three independent dipole didn’t work very well
◮ Three (correlated) dipoles in ∆-geometry worked very well.
◮ Just one parameter, R, Gaussian width for the position of

the “valence gluons”
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ˆ Modeling the proton
The Dipole Swing
Parameters

The Dipole Swing

◮ Each dipole carries a colour index
◮ Two dipoles with the same index are allowed to reconnect

(x1, y1), (x2, y2) → (x1, y2), (x2, y1) with probability

∝
(x1 − y1)

2(x2 − y2)
2

(x1 − y2)
2(x2 − y1)

2

◮ Coefficient adjusted so that the swing saturates
◮ Can be interpreted as gluon exchange, but also as

modeling the quadrupole as two combinations of dipoles.
◮ This gives saturation in the evolution (the number of

dipoles are not decreased, but smaller dipoles are
preferred).
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ˆ Modeling the proton
The Dipole Swing
Parameters

◮ The size of the proton, R.
◮ ΛQCD in the running coupling
◮ The strength of the dipole swing
◮ The quark masses for the photon wave function

hep-ph/0503181, hep-ph/0610157, hep-ph/0702087
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ˆ Modeling the proton
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ˆ Modeling the proton
The Dipole Swing
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MC implementation of Mueller Dipolesˆ
Diffractive and Elastic Scattering

Summary

Averaging and Squaring
Lorentz Frame Independence

ˇ
Confinement effects

◮ The total cross section: dσtot
d2b = 2〈1 − e−F 〉RL

where F =
∑

ij fij is b-dependent
◮ Should be independent of Lorentz frame
◮ In the end we want to describe final states.

Let’s start with some simple semi-inclusive observables.
◮ We use the Good & Walker picture of diffraction, using the

dipole states as eigenstates of the diffraction.
◮ Elastic cross section: dσel

d2b = 〈1 − e−F 〉2
RL

◮ Should also be frame-independent
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Summary

Averaging and Squaring
Lorentz Frame Independence

ˇ
Confinement effects

◮ Diffractive cross sections

dσR
SD

d2b
= 〈〈1 − e−F 〉2

L〉R − 〈1 − e−F 〉2
R,L

dσL
SD

d2b
= 〈〈1 − e−F 〉2

R〉L − 〈1 − e−F 〉2
R,L

dσDD

d2b
= 〈(1 − e−F )2〉R,L − 〈〈1 − e−F 〉2

L〉R − 〈〈1 − e−F 〉2
R〉L

+ 〈1 − e−F 〉2
R,L.

◮ Not frame-independent. And it shouldn’t be.
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Summary

Averaging and Squaring
Lorentz Frame Independence

ˇ
Confinement effects

◮ Assuming a total rapidity interval Y = log s, evolving
left-moving dipole system to y and right-moving to Y − y

◮ σdiff /σtot only gives the probability to have a gap at y , not
how large the gap is.

◮ Looking at hard diffraction in DIS we want to measure
σdiff (mX )/σtot , where mX is the mass of the diffracted
photon.

◮ We evolve the proton to yp = ln W 2/m2
X

◮ We evolve the photon to yγ⋆ = ln max(z, 1 − z)m2
X /p⊥

◮

σdiff (mX ) =

∫ ln m2
X dσdiff

d ln m2
X

d ln m2
X
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MC implementation of Mueller Dipolesˆ
Diffractive and Elastic Scattering

Summary

Averaging and Squaring
Lorentz Frame Independence

ˇ
Confinement effects

◮ But first we must make sure σtot is frame-independent
◮ Not a big problem for pp. Difficult for γ⋆p
◮ Important to treat gluon emission and dipole–dipole

scattering in the same way.
◮ The swing is necessary but not a big effect for γ⋆p
◮ Energy momentum conservation important
◮ Running αS is important
◮ But most of all. . .
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Summary

ˆ Lorentz Frame Independence
Confinement effects
Results

Confinement effects

◮ We have confinement effects in the initial proton
◮ We also had a naive suppression of large dipoles in the

evolution, but nothing in the dipole–dipole interaction
◮ Taking away confinement in the evolution did not work
◮ Need to include confinement effect everywhere
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Results

f (x i , y i |x j , y j) =
g4

8
(∆(x i −x j)−∆(x i −y j)−∆(y i −x j)+∆(y i −y j))

2

where ∆(r) is the Green’s function given by

∆(r) =

∫

d2k
(2π)2

eik ·r

k2 .

This assumes a Coulomb potential.
Let’s instead use a Yukawa potential with M = 1/R

∫

d2kkk
(2π)2

eikkk·rrr

kkk2 + M2 =
1

2π
K0(rM)

fij →
α2

s

2

(

K0(|xxx i − yyy j |/R) − K0(|xxx i − xxx j |/R) −

−K0(|yyy i − yyy j |/R) + K0(|xxx j − yyy i |/R)

)2
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dP
dY

=
ᾱ

2π
d2z

(x − y)2

(x − z)2(z − y)2 =
ᾱ

2π
d2z

(

x − z
(x − z)2 −

y − z
(y − z)2

)2

.

The two terms comes from the integration

∫

d2k
(2π)2i

keik ·r

k2 = −∇

∫

d2k
(2π)2

eik ·r

k2 .

Again changing to a Yukawa potential

dP
dY

→
ᾱ

2π
d2z

(

1
R

x − z
|x − z |

K1(
|x − z |

R
) −

1
R

y − z
|y − z |

K1(
|y − z |

R
)

)2

.

Same as before for r ≪ R. Exponentially damped for r ≫ R
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Results

Frame-independence of σpp
tot
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Frame-independence of σγ
⋆p

tot
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Results

◮ For the Tevatron we get σel/σtot ≈ ♠.♥♦

◮ Increases to ♠.♣♦ at the LHC
◮ Tevatron: ♠.♥♣

◮ Results for single/double diffraction in pp still to come
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Diffractive excitation of γ⋆ at HERA
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MC implementation of Mueller Dipolesˆ
Diffractive and Elastic Scattering

Summary

Summary

◮ We have a Monte Carlo implementation of Mueller Dipoles
◮ Key ingredients:

◮ Energy-momentum conservation
◮ Dipole swing
◮ Simple proton model
◮ Confinement effects
◮ . . . possibility to study final states

◮ Reasonable description of data:
◮ Total cross sections for pp and γ⋆p
◮ Diffraction at HERA
◮ Elastic scattering in pp
◮ . . . more to come
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