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Introduction Sources K > e of HE Restoration

[ Jele}

Astronomy

Intensity/phase interferometry first used to assess sizes of
astronomical objects. Astronomers have since moved to details:

CAPELLA: COAST R at 1280nm on 25/10/87

100 (

Relative R.A. (milforcsec)
Figure 5.7: Reconstructed image of Capella, from data taken on 25 October 1997 at a

wavelength of 1.3 um. The contours are at -4, 4, 10, 20, 30, ..., 90% of the peak ux.
The map has been restored with a circular beam for clarity.

red giant Betelguese binary star Capella, Monnier

Can we do comparably well? ~ Rep Prog Phy 66(03)789
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Introduction < Practice of HE Restoration

0e0

Imaging
Source f/correlation: case of imaging. General task:

Cla) = [ dark(a.n s(r)
From data w/ errors, C(q), determine the source S(r).

Requires inversion of the kernel K.
Optical recognition: K - blurring function, max entropy method

A O
C: L2 EEE R N o - o WE - & 2
L T & E T s
1 HE
S TRAGE DY OQF A BA L E T
PRINCE OF £F NRMLA B X - ©
©n
NSCL

Electron scattering: do/dq — p(r)
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Introduction
ooe

Factorization of Final-State Amplitude in Reactions

2-ptcle inclusive cross section
atlow [p; — pz|

do () (r)2
= /d 0]
data 2-ptcle wf

distribution of emission
points in 2-ptcle CM

%

2l
(%)
@)
(=i

Imaging

P. Danielewicz



Factorization of Final-State Amplitude in Reactions

2-ptcle inclusive cross section

‘71//' atlow [py — pz|
' o do

\\‘\—:::‘; P, dp1 dp2 o, p. (1)
P, data 2-ptcle wf

N\ . distribution of emission
points in 2-ptcle CM

Normalizing with 1-ptcle cross sections yields correlation f:
1 do

_ _odpidpa  _
C(p —Pz)—w—/dr
o dpy o dp2
Then the relative source is normalized to unity: [ dr Sp(r) = 1.
Note: C may only give access to the density of relative emission

points in 2-ptcle CM, integrated there over time
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Accessing Sources
[ leJele]

Integral Relation
Of interest the deviation of correlation function from unity:

R(a) = C(@)-1 = [ ar(jof(nE 1) () = [ ark(a.r)s(r)

Learning about S possible when scat wf \CD(({)(r)]z deviates
from 1, either due to symmetrization or interaction within the
pair. For some ptcle pairs, it may easier to learn about S than for others.
Ease of learning about shape anisotropy may depend on a pair.
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Accessing Sources
[ leJele]

Integral Relation
Of interest the deviation of correlation function from unity:

R(a) = C(@)-1 = [ ar(jof(nE 1) () = [ ark(a.r)s(r)

Learning about S possible when scat wf \CD((()(r)]z deviates
from 1, either due to symmetrization or interaction within the
pair. For some ptcle pairs, it may easier to learn about S than for others.
Ease of learning about shape anisotropy may depend on a pair.

For pure interference, 7%’s or ~’s, d)&f)(r) = % (eiqr + efiq-r),

kernel K = |®|2 — 1 results from the interference term in |®|2:
K(q,r) = [o§ (r)2 — 1 = cos (2qr)
= R(q) = /drcos (2gr)S(r)

3D cosine-transform source-correlation relation.
Brown&PD, PLB398(97)252
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Accessing Sources
[e] Tele]

Fourier-Transform of Angle-Averaged Correlation

:2.0: T Biww‘ww‘wwHHHHHH
S i
& nn
[0
N T S LS RO SN SR .
g -
&
1.0 o L
05 |- o i
* O:Mmmm " \ \ ‘
00 0.0 25 5.0 7.5 10.0 12,5 15.0
0 005 01 0.15 r (fm)

Q (GeV/c) restored source: relative dstr of
Coulomb-corrected 1D 7~-7~ « -7~ emission pts in central
correlation-function Au+Au at 10.8 GeV/c (E877)
(Miskowiec et al.) Brown, PD PLB398(97)252

@

E
S(r — 0): entropy, freeze-out density (Brown, PD, Panitkin . ..) @?
S(0) \, & entropy /
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Accessing Sources
[e]e] o]

Multipole Decomposition

R(q) = /dr K(q,r) S(r) source-correlation relation

but a spin-averaged kernel depends on the relative angle only
K(Q,r) = K(q,r,cosfqr) = Y (20 + 1) Ki(q. r) P*(cos Ogr)

With !

R(q) = VAT Y R™(Q)Y™(@), S(r)=Var) ST(q)Y"(F)

we reduce the 3D relation to a set of 1D relations for different
deformation coefficients:

RM(q) = 4r / drr? K,(q, r) S"™(r)

Different deformation coefficients for the source and correlation
functions are directly related to each other.
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Accessing Sources
[e]e] o]

Multipole Decomposition

R(q) = /dr K(q,r) S(r) source-correlation relation

but a spin-averaged kernel depends on the relative angle only
K(Q,r) = K(q,r,cosfqr) = Y (20 + 1) Ki(q. r) P*(cos Ogr)

With !

R(q) = Var Y R™(q)Y™(@), S(r) = V4> §M(q)Y™(#)

we reduce the 3D relation to a set of 1D relations for different

deformation coefficients:

RM(q) = 4n / dr r> Ky(q, r) S“™(r)
Different deformation coefficients for the source and correlation

functions are directly related to each other.

For pure interference Ky(q, r) = (—1)%2j,(2qr), for even ¢ only,
where j, is spherical Bessel function.
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Accessing Sources
[e]e]e] ]

1D Source Imaging

The ¢ = 0 1D relation connects angle-averaged source S(r)

and correlation R(q) functions, in terms of angle-averaged
kernel Ky:

R(q) = 4r [ drr? Ky(q,r) S(r)
Source discretization strategy works for any ptcle pair & ¢
Q Discretize integral

Z47rArr Ko(ai, 1) S(r) =) _K; S
. S(r)A J
Q Vary S(rj) to minimize x2: S1
* s2
5 (32K Sj— R{™)? .
X = Z 2 S3
i i .
@ Mix result from minimization: sS4 ©
S=(KTK)'KT R N O N @é
Brown&PD, PRC57(98)2474 rlor2 r3 r4_.or
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Accessing Sources
0

Understanding 1D pp Correlations
Altered interpretation of Cpp: Gaussian fit vs imaging
Verde PRC65(02)054609

HNHTAu E/A=TS MeV 6=25° Imaging analysis x10*
§ 4 l ﬁn T T T @ T T T T T T T T (.;“ 25 . . . . . . . . .
¥ 2 Pom 1Ee2r (MeVie)= 1 € Sources
T T 0 840-1230 MeVic “ P = .
= # ~ L — 1230-840 | 520} mm [maging-
U : @ 450-780 MeVic U .
15F o ‘9»‘ 5 A203%0MeVie 4 15 450-780 o\ T Gaussian
g ‘“‘%Q —_— 270-390 or 1
: 2 (X
gﬂ?zﬁm e e 1o} -
L v & 1t R 1
i 5F . 4
5 3 . \
05 L ‘:l Il 1 1 1 1 1 1 1 1 05 L Il Il 1 Il Il 1 Il Il 1 S -:-..::::
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 00 12 3 456 7 8 9
q (MeV/c) q (MeV/c) r (fm)
Gauss par: quickly changing radii. Imaging: quickly changing ©
preequilibrium fraction, non-Gaussian source shapes! Q) |

Preequilibrium fraction: [*~7dr S = A
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Accessing Sources
(o] J

Imaged pp Source Compared to Transport

Verde PRC67(03)034606: Ar+Sc central collisions at 80 MeV/u,
fast 400 < P < 800 MeV/c pairs

——— E/A=80 MeV
g —BUU =IO Nucleon-based transport
\ —— BUU fit, A=0.52
, == Imaging reproduces correctly the
R \ P =400-800 MeV/c Shape of the preequilibrium
E ) v source.
=1x10 7

w The transport cannot

describe correctly the
preequilibrium
pair fraction.

O6~2"4 6 8 10 12 @
r (fm) ‘Nsé
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Towards Anisotropy: Basis in Spherical Angle
R(Q) = VAT 32,m R™M(q) Y™(Q)
S(r) = Var Y SM(q) Y (F)
RM(q) = 4r [drr? Ki(q,r) S*™(r)
Problem: Why giving up real quantities,

X

z-beam
R & S, for imaginary, R‘™ & S‘m? /
Another basis??
ES®
on
NGCL
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3D Structure
[ Jele]

Towards Anisotropy: Basis in Spherical Angle
R(Q) = VAT 32,m R™M(q) Y™(Q)
S(r) = Var Y S'™(q) YOM(F)
RM(q) = 4r [drr? Ki(q,r) S*™(r)
Problem: Why giving up real quantities, z-beam_
R & S, for imaginary, R‘™ & S‘m? /

Another basis??
Take the direction vector: A, = (sin 6 cos ¢, sin 6 sin ¢, cos )
Rank-¢ tensor product:
(ﬁz)m...a@ = ﬁa1 ha1 v ﬁozg = Z Corm Yf m
o<e,m
P projection operator that, within the space of rank-¢
cartesian tensors, removes Y™ components with ¢/ < ¢:

(,Pﬁg)m...ag = Z Cim Yzm

m
The components P’ are real and can be used to replace Y*™.
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3D Structure
oeo

Low-¢ Cartesian Harmonics

PA° = A
(PAYy = hq Applequist Theor. Chem.
» o 1 Acc 107(02)103
(Pn )a1 Qz Moy Nay, §5a1 a2

PD&Pratt PLB618(05)60
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3D Structure
oeo

Low-¢ Cartesian Harmonics

PA° = A
(PAYy = hq Applequist Theor. Chem.
» o 1 Acc 107(02)103
(Pn )a1 Qz Moy Nay, §5a1 a2

PD&Pratt PLB618(05)60

‘P can be called a detracing operator as

Z(Ipﬁé)ozaag,.,a@ =0

«
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3D Structure
oeo

Low-¢ Cartesian Harmonics

PA° = A
(PAYy = hq Applequist Theor. Chem.
» o 1 Acc 107(02)103
(Pn )a1 Qz Moy Nay, §5a1 a2

PD&Pratt PLB618(05)60

‘P can be called a detracing operator as

Z(Pﬁé)aaag...a@ - 0

«

Completeness relation (P = P = P?):

s@-9) = -3 B S~ (i), o, (P,

4r & a e
.
1 (20 + 1)1 . A A @€
= 4’“—; T Z (Pn/ )a1..-ae na1 .. .naz @é

..oy
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3D Structure
ooe

Consequences
o
R(a) = [ o a(sr - =3 > R0, (@) oy -G
? oq...0y

20+ 1)1 [dQ .
where  RY). ., (@)= /4; R(Q) (P4 oy
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3D Structure
ooe

Consequences
o
R(q)—/dQ’a(Q’—Q => Y RY (@) 8- Go,
? oq...0y
20+ 1)l [dQ .
where Rg?..w(mz( 5 [ GARQ) (PG

@ Cartesian coefficients for R & S directly related to each
other:

RY...0n(q) = 47r/dr 2 Ko(q, r) S0, (r)
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3D Structure
ooe

Consequences
o
R(q)—/dQ’a(Q’—Q => Y RY (@) 8- Go,
? oq...0y
20+ 1)l [dQ .
where R&)..‘w(q):( 5 [ GARQ) (PG

@ Cartesian coefficients for R & S directly related to each
other:

RY...0n(q) = 47r/dr 2 Ko(q, r) S0, (r)

@ For weak anisotropies only lowest-¢ matter:

R( +Z R(w q + Z R()q()/g q(H 67&2 @
aq O
monopole, dipole, quadrupole NSCL
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3D Structure
[ o)

Sample Gaussian Source

Anisotropic Gaussian, elongated and displaced along the beam

axis
00002 .
Displaced deformed source
moments evaluated moving
0.00015 at constant r about the origin

0.0001 |

A X
| 5.7 fm
/’—Ir\ . . oo |
0| 4fm 113fm beam
016
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3D Structure
(o] )

Low-¢ Characteristics
3D info in terms of 1D plots

0.000175 -3
L ] 00002 .
3 Displaced deformed source
0.000150 [

moments evaluated moving

0.00015 at constant r about the origin
.
0.0001

5e-005 -

016

0.000125 f
0.000100 E
0.000075 f
0.000050 f

&~ 0000025
i £

g E 4
& 0.000000
n 401078 F

201075 F

0

7 0
=3 , along ™

mas/\ Along z-axis:
LS )+ S.00)+ Sar) .

i 1 Inxzplane, at 45° to z-axis:
o e S(r) = 89(1)+ 258:(1) + 5 (Sulr) + S @

S(é) x r£ Sxx + Syy + Szz =0
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Practice of HE Restoration
[ JeJele]

Source & Correlation Symmetries

Midrapidity identical-w sources in A+A collisions, e.g. NA49
Pb+Pb at SPS or PHENIX/STAR Au+Au at RHIC:

@ Identical ptcles: F — —F < even-/ only

@ Midrapidity: z — —z (beam dir) & even-z moments only

@ Reaction-plane averaging: y — —y (sideways) < even-y
moments only

@ Inthe end, also: x — —x (outward) < even-x moments
only
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Practice of HE Restoration
[ JeJele]

Source & Correlation Symmetries

Midrapidity identical-w sources in A+A collisions, e.g. NA49
Pb+Pb at SPS or PHENIX/STAR Au+Au at RHIC:

@ Identical ptcles: F — —F < even-/ only

@ Midrapidity: z — —z (beam dir) & even-z moments only

@ Reaction-plane averaging: y — —y (sideways) < even-y
moments only

@ Inthe end, also: x — —x (outward) < even-x moments
only

/=0

@ (=2: x? y? z?(only 2 independent)

@ [ =4: x* y* 24 x?y? x?z?, y? z? (only 3 independent) @
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Practice of HE Restoration
[e] Tele]

¢ = 0-4 Correlation Moments
Emission simulated from Gaussian source characterized by
Ry =7fm, R, =5fm, R, = 10fm and 7 = 5fm/c.

0.6 LT a) R° (a) R? nn
o4l o Simulation, @ x 0.20<p;<0.36GeV

0.20<p,<0.36GeV|  O.1f -0.35<y, -y(<0.35
0.2r -0.35<y,-y,<0.35

0 ‘ | eetaces
b) R* ® Simulation
g (O R s O 2-Gaus. Fit
] _— 0.05r E@’
04+ (b) F‘2x2 0 ﬂi‘ai
‘ ‘ -
(C) I:‘2y2 0 (C) R 2y

0.2 . _!!q
0.1 i' -0.05

0 L L L L L h L L L L L L L
0 0.0050.010.0150.020.0250.030.0350.04 0 0.0050.010.0150.020.0250.030.0350.04
q (GeV/c) q (GeV/lc)
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Practice of HE Restoration
[e]e] o]

¢ = 6 Correlation Moments

Gaussian w/Ry = 7fm, R, = 5fm, R, = 10fm and 7 = 5fm/c.

0.04F o Simulation | 0.20<p,<0.36Gev | ~ Coulomb repulsion is
-0.05r O 2-Gaus. Fit[ -0.35<y,-y,<0.35 fully accounted for
0.04| (©) Ruye (d) Rg and contributes to
0.03 correlation
0.02 anisotropy.
0.01

O Ry NP

0 001 0.02 0.03 0.01 0.02 0.03 0.04
q (GeV/c)
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Practice of HE Restoration
[e]e]e] ]

Test Source Restoration

From moments,
function fit & imaging

Rx — 7fm, Ry - 5fm,

‘ ‘(bj S0, éyéz;,‘ 354;‘9‘,56‘ 1 R,=10fm
and 7 = 5fm/c.

T &R
0.20<p.<0.36 GeV/c . .
T
-0.35<y, -y,<0.35 Z - longitudinal,
b o0 along beam axis
() S™ + S+ S+

S(r) (x 107 fm™®)

Sodrce Imgge X - outward,

e~ ® 2-Gaus. Fit .
By, 4 Model Calc. along pair mo
10F S, y - perpendicular
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Practice of HE Restoration
[ ]

7w in Au+Au at /s = 200

005

—~—
PH ENIX
[Au+Au Vs, =200GeV (0<cen<20%)
(a"f NNTEH EHEY
p TR &TT 5
® 0.20<p,<0.36 GeV/c O 162(
L]
-0.35<y,-Y<0.35 G
Sy - - - Restored
_f ..... . e
®)
----- Restored
R,, - Restored
r O R, Restored
[N P | TR T TUPYY T
c) g #* R, Restored
I R, * - Restored
# O R,,—Restored
b
T
SR Lol bl
(d)%éﬁ' ™ ¥ R,,~—- Restored
F )L: J R,, - - Restored
i O R,y Restored
F (1
T b el L
0 5 10 15 20 25 30 35 40 45

q (MeV/c)

Data/restoration

o
PHTENIX
0. o2 . o4 . ob 0 A2, 4 . 6
(a) S + S;o+ Syat S G+ Co+ Cu+ Gy
r O Data
,‘x‘o O Imaging
e % Fo iy — 2-Gaus Fit
@ Au+Au N
10 b s\, =200GeV F
O<cen<20 %
5 o & o8 = =
‘(b) S+ Spo+ Syat+ Syslf () C + Cyot+ Cya+ Gy

e Tt & T
E 0% 0.20<p,<0.36 GeV/c
nos -0.35<y,-y,<0.35
=17] RC

x

20
r (fm)

Reach up to r ~ 50

fm
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Conclusions
[ ]

Conclusions

@ Correlations at low relative velocities yield access to
source spatial characteristics in the pair CM! Temporal
information in the pair CM is not directly accessible.
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Conclusions
[ ]

Conclusions

@ Correlations at low relative velocities yield access to
source spatial characteristics in the pair CM! Temporal
information in the pair CM is not directly accessible.

@ Different final-state effects can provide information on

source asymmetry, including identity interference,
Coulomb and strong interactions.
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Conclusions
[ ]

Conclusions

@ Correlations at low relative velocities yield access to
source spatial characteristics in the pair CM! Temporal
information in the pair CM is not directly accessible.

@ Different final-state effects can provide information on
source asymmetry, including identity interference,
Coulomb and strong interactions.

@ Cartesian harmonics provide easy means f/representing &
manipulating info in functions dependent on spherical
angle, such as correlation and source functions.
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Conclusions
[ ]

Conclusions

@ Correlations at low relative velocities yield access to
source spatial characteristics in the pair CM! Temporal
information in the pair CM is not directly accessible.

@ Different final-state effects can provide information on
source asymmetry, including identity interference,
Coulomb and strong interactions.

@ Cartesian harmonics provide easy means f/representing &
manipulating info in functions dependent on spherical
angle, such as correlation and source functions.

@ Given data with high resolution, restoration can yield
access to sources at far-away distances, up to ~ 50 fm.
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