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Astronomy

Intensity/phase interferometry first used to assess sizes of
astronomical objects. Astronomers have since moved to details:

red giant Betelguese

Can we do comparably well?

binary star Capella, Monnier
Rep Prog Phy 66(03)789
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Imaging
Source f/correlation: case of imaging. General task:

C(q) =

∫
dr K (q, r) S(r)

From data w/ errors, C(q), determine the source S(r).
Requires inversion of the kernel K .
Optical recognition: K - blurring function, max entropy method

C:

S:

Electron scattering: dσ/dq → ρ(r)
Imaging P. Danielewicz
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Factorization of Final-State Amplitude in Reactions
2-ptcle inclusive cross section
at low |p1 − p2|

dσ

dp1 dp2
=

∫
dr S′

P(r) |Φ(−)
p1−p2

(r)|2

data source 2-ptcle wf

S′: distribution of emission
points in 2-ptcle CM

Normalizing with 1-ptcle cross sections yields correlation f:

C(p1 − p2) =

1
σ

dσ
dp1 dp2

1
σ

dσ
dp1

1
σ

dσ
dp2

=

∫
dr SP(r) |Φ(−)

p1−p2
(r)|2

Then the relative source is normalized to unity:
∫

dr SP(r) = 1.
Note: C may only give access to the density of relative emission
points in 2-ptcle CM, integrated there over time
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Integral Relation
Of interest the deviation of correlation function from unity:

R(q) = C(q)−1 =

∫
dr

(
|Φ(−)

q (r)|2 − 1
)

S(r) ≡
∫

dr K (q, r) S(r)

Learning about S possible when scat wf |Φ(−)
q (r)|2 deviates

from 1, either due to symmetrization or interaction within the
pair. For some ptcle pairs, it may easier to learn about S than for others.
Ease of learning about shape anisotropy may depend on a pair.

For pure interference, π0’s or γ’s, Φ
(−)
q (r) = 1√

2

(
eiq·r + e−iq·r),

kernel K = |Φ|2 − 1 results from the interference term in |Φ|2:

K (q, r) = |Φ(−)
q (r)|2 − 1 = cos (2qr)

⇒ R(q) =

∫
dr cos (2qr)S(r)

3D cosine-transform source-correlation relation.
Brown&PD, PLB398(97)252
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Fourier-Transform of Angle-Averaged Correlation

Coulomb-corrected 1D π−-π−

correlation-function
(Miskowiec et al.)

restored source: relative dstr of
π−-π− emission pts in central
Au+Au at 10.8 GeV/c (E877)
Brown, PD PLB398(97)252

S(r → 0): entropy, freeze-out density (Brown, PD, Panitkin . . . )
S(0)↘ ⇔ entropy ↗

Imaging P. Danielewicz
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Multipole Decomposition

R(q) =

∫
dr K (q, r) S(r) source-correlation relation

but a spin-averaged kernel depends on the relative angle only

K (q, r) = K (q, r , cos θqr) =
∑

`

(2` + 1) K`(q, r) P`(cos θqr)

With

R(q) =
√

4π
∑
R`m(q) Y`m(q̂) , S(r) =

√
4π

∑
S`m(q) Y`m(r̂)

we reduce the 3D relation to a set of 1D relations for different
deformation coefficients:

R`m(q) = 4π

∫
dr r2 K`(q, r) S`m(r)

Different deformation coefficients for the source and correlation
functions are directly related to each other.
For pure interference K`(q, r) = (−1)`/2j`(2qr), for even ` only,
where j` is spherical Bessel function.
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1D Source Imaging
The ` = 0 1D relation connects angle-averaged source S(r)
and correlation R(q) functions, in terms of angle-averaged
kernel K0:

R(q) = 4π

∫
dr r2 K0(q, r) S(r)

Source discretization strategy works for any ptcle pair & `

1 Discretize integral
Ri =

∑
j

4π ∆r r2
j K0(qi , rj) S(rj) ≡

∑
j

Kij Sj

2 Vary S(rj) to minimize χ2:

χ2 =
∑

i

(
∑

j Kij Sj −Rexp
i )2

σ2
i

3 Mtx result from minimization:

S = (K>K )−1 K>Rexp

Brown&PD, PRC57(98)2474
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Understanding 1D pp Correlations
Altered interpretation of Cpp: Gaussian fit vs imaging
Verde PRC65(02)054609

Gauss par: quickly changing radii. Imaging: quickly changing
preequilibrium fraction, non-Gaussian source shapes!
Preequilibrium fraction:

∫ r<R dr S ≡ λ

Imaging P. Danielewicz
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Imaged pp Source Compared to Transport

Verde PRC67(03)034606: Ar+Sc central collisions at 80 MeV/u,
fast 400 < Ptot < 800 MeV/c pairs

Nucleon-based transport
reproduces correctly the
shape of the preequilibrium
source.

The transport cannot
describe correctly the
preequilibrium
pair fraction.

Imaging P. Danielewicz
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Towards Anisotropy: Basis in Spherical Angle
R(q) =

√
4π

∑
`mR`m(q) Y`m(q̂)

S(r) =
√

4π
∑

`m S`m(q) Y`m(r̂)

R`m(q) = 4π
∫

dr r2 K`(q, r) S`m(r)

Problem: Why giving up real quantities,
R & S, for imaginary, R`m & S`m?
Another basis??

Take the direction vector: n̂α = (sin θ cos φ, sin θ sin φ, cos θ)

Rank-` tensor product:
(n̂`)α1...α`

≡ n̂α1 n̂α1 . . . n̂α`
=

∑
`′≤`,m

c`′m Y`′m

P(`,`) projection operator that, within the space of rank-`
cartesian tensors, removes Y`′m components with `′ < `:

(Pn̂`)α1...α`
=

∑
m

c`m Y`m

The components Pn̂` are real and can be used to replace Y`m.
Imaging P. Danielewicz
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Low-` Cartesian Harmonics
Pn̂0 = 1

(Pn̂1)α = n̂α

(Pn̂2)α1 α2 = n̂α1 n̂α2 −
1
3
δα1 α2

...

Applequist Theor. Chem.
Acc 107(02)103

PD&Pratt PLB618(05)60

P can be called a detracing operator as∑
α

(Pn̂`)α α α3...α`
= 0

Completeness relation (P = P> = P2):

δ(Ω′ − Ω) =
1

4π

∑
`

(2` + 1)!!

`!

∑
α1...α`

(Pn̂′
`
)α1...α`

(Pn̂`)α1...α`

=
1

4π

∑
`

(2` + 1)!!

`!

∑
α1...α`

(Pn̂′
`
)α1...α`

n̂α1 . . . n̂α`
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Consequences

R(q) =

∫
dΩ′ δ(Ω′ − Ω)R(q′) =

∑
`

∑
α1...α`

R(`)
α1...α`

(q) q̂α1 . . . q̂α`

where R(`)
α1...α`

(q) =
(2` + 1)!!

`!

∫
dΩq

4π
R(q) (Pq̂`)α1...α`

Cartesian coefficients for R & S directly related to each
other:

R(`)
α1···α`

(q) = 4π

∫
dr r2 K`(q, r)S(`)

α1···α`
(r)

For weak anisotropies, only lowest-` matter:

R(q) = R(0)(q)+
∑
α

R(1)
α (q) q̂α+

∑
α1 α2

R(2)
α1α2

(q) q̂α1 q̂α2+. . .

monopole, dipole, quadrupole. . .

Imaging P. Danielewicz



Introduction Accessing Sources 3D Structure Practice of HE Restoration Conclusions

Consequences

R(q) =

∫
dΩ′ δ(Ω′ − Ω)R(q′) =

∑
`

∑
α1...α`

R(`)
α1...α`

(q) q̂α1 . . . q̂α`

where R(`)
α1...α`

(q) =
(2` + 1)!!

`!

∫
dΩq

4π
R(q) (Pq̂`)α1...α`

Cartesian coefficients for R & S directly related to each
other:

R(`)
α1···α`

(q) = 4π

∫
dr r2 K`(q, r)S(`)

α1···α`
(r)

For weak anisotropies, only lowest-` matter:

R(q) = R(0)(q)+
∑
α

R(1)
α (q) q̂α+

∑
α1 α2

R(2)
α1α2

(q) q̂α1 q̂α2+. . .

monopole, dipole, quadrupole. . .

Imaging P. Danielewicz



Introduction Accessing Sources 3D Structure Practice of HE Restoration Conclusions

Consequences

R(q) =

∫
dΩ′ δ(Ω′ − Ω)R(q′) =

∑
`

∑
α1...α`

R(`)
α1...α`

(q) q̂α1 . . . q̂α`

where R(`)
α1...α`

(q) =
(2` + 1)!!

`!

∫
dΩq

4π
R(q) (Pq̂`)α1...α`

Cartesian coefficients for R & S directly related to each
other:

R(`)
α1···α`

(q) = 4π

∫
dr r2 K`(q, r)S(`)

α1···α`
(r)

For weak anisotropies, only lowest-` matter:

R(q) = R(0)(q)+
∑
α

R(1)
α (q) q̂α+

∑
α1 α2

R(2)
α1α2

(q) q̂α1 q̂α2+. . .

monopole, dipole, quadrupole. . .

Imaging P. Danielewicz



Introduction Accessing Sources 3D Structure Practice of HE Restoration Conclusions

Sample Gaussian Source

Anisotropic Gaussian, elongated and displaced along the beam
axis
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Low-` Characteristics
3D info in terms of 1D plots

S(`) ∝ r `

Along z-axis:
S(r) = S0(r) + Sz(r) + Szz(r) + . . .

In xz plane, at 45◦ to z-axis:
S(r) = S0(r)+ 1√

2
Sz(r)+ 1

2 (Sxx(r) + Szz(r))

Sxx + Syy + Szz = 0
Imaging P. Danielewicz
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Source & Correlation Symmetries

Midrapidity identical-π sources in A+A collisions, e.g. NA49
Pb+Pb at SPS or PHENIX/STAR Au+Au at RHIC:

Identical ptcles: ~r → −~r ⇔ even-` only
Midrapidity: z → −z (beam dir) ⇔ even-z moments only
Reaction-plane averaging: y → −y (sideways) ⇔ even-y
moments only
In the end, also: x → −x (outward) ⇔ even-x moments
only

` = 0
` = 2: x2, y2, z2 (only 2 independent)
` = 4: x4, y4, z4, x2 y2, x2 z2, y2 z2 (only 3 independent)

Imaging P. Danielewicz
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` = 0-4 Correlation Moments
Emission simulated from Gaussian source characterized by
Rx = 7 fm, Ry = 5 fm, Rz = 10 fm and τ = 5 fm/c.

Simulation + fit to simulated correlation

Imaging P. Danielewicz
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` = 6 Correlation Moments

Gaussian w/Rx = 7 fm, Ry = 5 fm, Rz = 10 fm and τ = 5 fm/c.

Coulomb repulsion is
fully accounted for
and contributes to
correlation
anisotropy.
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Test Source Restoration
From moments,
function fit & imaging

Rx = 7 fm, Ry = 5 fm,
Rz = 10 fm
and τ = 5 fm/c.

z - longitudinal,
along beam axis

x - outward,
along pair mo

y - perpendicular
to x and y

Imaging P. Danielewicz
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ππ in Au+Au at
√

s = 200

Data/restoration Reach up to r ∼ 50 fm
Imaging P. Danielewicz
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Conclusions

Correlations at low relative velocities yield access to
source spatial characteristics in the pair CM! Temporal
information in the pair CM is not directly accessible.
Different final-state effects can provide information on
source asymmetry, including identity interference,
Coulomb and strong interactions.
Cartesian harmonics provide easy means f/representing &
manipulating info in functions dependent on spherical
angle, such as correlation and source functions.
Given data with high resolution, restoration can yield
access to sources at far-away distances, up to ∼ 50 fm.
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