Matrix combination of BFKL and DGLAP

Gavin Salam
LPTHE, Universities of Paris VI and VII and CNRS

Work with M. Ciafaloni, D. Colferai and A. Stasto [arXiv:0707.1453]

ISMD 2007
Berkeley, 5-9 August 2007

Introduction

This talk is a progress report on a long-term project to put together DGLAP and the linear regime of BFKL evolution, including higher order and running-coupling corrections.

Main groups active:

- Altarelli, Ball, Forte (+ Falgari, Marzano)
- Ciafaloni, Colferai, GPS, Staśto
aka ABF
+ Thorne \& White

Motivation

When looking at proton structure we can establish different evolution regimes:

But:

- Regions of validity not clearly delimited

Motivation

When looking at proton structure we can establish different evolution regimes:

But:

- Regions of validity not clearly delimited
Higher orders of DGLAP
contaminated by leading BFKL:

When looking at proton structure we can establish different evolution regimes:

But:

- Regions of validity not clearly delimited
- Higher orders of DGLAP contaminated by leading BFKL:
$P_{g g}(x) \simeq \frac{\bar{\alpha}_{s}}{x}+\bar{\alpha}_{s}^{4} \frac{\zeta(3)}{3} \frac{\ln ^{3} x}{x}+\ldots$
Higher orders of BFKL contaminated by leading DGLAP:

When looking at proton structure we can establish different evolution regimes:

But:

- Regions of validity not clearly delimited
- Higher orders of DGLAP contaminated by leading BFKL:

$$
P_{g g}(x) \simeq \frac{\bar{\alpha}_{s}}{x}+\bar{\alpha}_{\mathrm{s}}^{4} \frac{\zeta(3)}{3} \frac{\ln ^{3} x}{x}+\ldots
$$

- Higher orders of BFKL contaminated by leading DGLAP:

$$
K\left(k, k^{\prime}\right) \simeq \bar{\alpha}_{\mathrm{s}}-\bar{\alpha}_{\mathrm{s}}^{2} \frac{11}{12} \ln \frac{k^{2}}{k^{\prime 2}}+\ldots
$$

DGLAP, BFKL (fixed coupling)

DGLAP

BFKL

Integro(k)-differential(x) eq ${ }^{n}$ for unintegrated gluon dist., G :

$$
\begin{aligned}
& \frac{d G\left(x, k^{2}\right)}{d \ln 1 / x}= \\
& \quad \int \frac{d k^{\prime 2}}{k^{\prime 2}} K\left(k / k^{\prime}\right) G\left(x, k^{\prime 2}\right)
\end{aligned}
$$

k, Q are transverse scales; x is longitudinal mom. fraction

$$
x g\left(x, Q^{2}\right)=\int^{Q} d^{2} k G\left(x, k^{2}\right)
$$

Both DGLAP and BFKL relate \perp structure to long. structure:

- given long. struct. DGLAP gives you \perp struct. evolution
- given \perp struct. BFKL gives you long. struct. evolution

DGLAP, BFKL (fixed coupling)

DGLAP

BFKL

Integro(k)-differential(x) eq ${ }^{\mathrm{n}}$ for unintegrated gluon dist., G :

$$
\frac{d G\left(x, k^{2}\right)}{d \ln 1 / x}=
$$

$$
\int \frac{d k^{\prime 2}}{k^{\prime 2}} K\left(k / k^{\prime}\right) G\left(x, k^{\prime 2}\right)
$$

k, Q are transverse scales; x is longitudinal mom. fraction

$$
x g\left(x, Q^{2}\right)=\int^{Q} d^{2} k G\left(x, k^{2}\right)
$$

Both DGLAP and BFKL relate \perp structure to long. structure:

- given long. struct. DGLAP gives you \perp struct. evolution
- given \perp struct. BFKL gives you long. struct. evolution

When calculated at all orders they must encode the same physics.
Inevitable that one contaminated by other at fixed order

If DGLAP contaminates BFKL does it matter? Can we not just take the perturbative expansion? Try LL,

Choices that formally only affect NNLLx:
$>$ scale of α_{s}

- 'energy-scale' $s_{0}\left(Y=\ln s / s_{0}\right)$.
lead to completely different an-
swers

NLL Green function solution

If DGLAP contaminates BFKL does it matter? Can we not just take the perturbative expansion? Try LL, then NLL BFKL.

Choices that formally only affect NNLLx:

- scale of $\alpha_{\text {s }}$
- 'energy-scale' $s_{0}\left(Y=\ln s / s_{0}\right)$. lead to completely different answers

NLL Green function solution

If DGLAP contaminates BFKL does it matter? Can we not just take the perturbative expansion? Try LL, then NLL BFKL.

Choices that formally only affect NNLLx:

- scale of $\alpha_{\text {s }}$
- 'energy-scale' $s_{0}\left(Y=\ln s / s_{0}\right)$. lead to completely different answers

Source of instability is presence in NLL BFKL of a truncated subset of DGLAP. Only way to get stability is to include full DGLAP.

Merging BFKL \& DGLAP

Long history of work on merging leading BFKL and DGLAP. CCFM '88; Lund group ~ '95; Durham-Cracow group ~'95;

Two approaches have been used in order to combine BFKL and DGLAP including higher orders:

- Establish all-order relation (duality relation) between splitting functions (DGLAP) and evolution kernel (BFKL). Use that to simultaneously construct splitting functions consistent with BFKL kernel and vice-versa. Altarelli, Ball \& Forte '99-
- Establish a more general equation that embodies both BFKL and DGLAP (double-integral equation):

$$
G\left(x, k^{2}\right)=G_{0}\left(x, k^{2}\right)+\int d z \int d k^{\prime 2} \frac{d k^{\prime 2}}{k^{\prime 2}} K\left(z, k, k^{\prime}\right) G\left(x / z, k^{\prime 2}\right)
$$

From that, deduce effective splitting function and BFKL kernel. Ciafaloni, Colferai, GPS \& Staśto, '98-

Merging BFKL \& DGLAP

Long history of work on merging leading BFKL and DGLAP. CCFM '88; Lund group ~ '95; Durham-Cracow group ~'95;

Two approaches have been used in order to combine BFKL and DGLAP including higher orders:

- Establish all-order relation (duality relation) between splitting functions (DGLAP) and evolution kernel (BFKL). Use that to simultaneously construct splitting functions consistent with BFKL kernel and vice-versa. Altarelli, Ball \& Forte '99-
- Establish a more general equation that embodies both BFKL and DGLAP (double-integral equation):

$$
G\left(x, k^{2}, k_{0}^{2}\right)=\delta^{2}\left(k-k_{0}\right)+\int d z \int d k^{\prime 2} \frac{d k^{\prime 2}}{k^{\prime 2}} K\left(z, k, k^{\prime}\right) G\left(x / z, k^{\prime 2}, k_{0}^{2}\right)
$$

From that, deduce effective splitting function and BFKL kernel. Ciafaloni, Colferai, GPS \& Staśto, '98-

Pure glue case, LLx+LO

Write Kernel as power series in $\alpha_{\mathrm{s}}: K=\sum_{n=0} \hat{\alpha}^{n} K_{n} \quad \hat{\alpha}=\alpha_{\mathrm{s}} / 2 \pi$
First order ($L L x-L O$) has two parts:

$$
K_{0}(\gamma, \omega)=\underbrace{\frac{2 C_{A}}{\omega} \chi_{0}^{\omega}(\gamma)}_{\text {BFKL }(\text { LLx } x)}+\underbrace{\left[\Gamma_{g g, 0}(\omega)-\frac{2 C_{A}}{\omega}\right] \chi_{c}^{\omega}(\gamma)}_{\text {finite-x DGLAP (LO) }}
$$

use Mellin transforms: $\gamma \leftrightarrow k^{2}, \omega \leftrightarrow \ln 1 / x, \Gamma_{g g, 0}(\omega) \leftrightarrow P_{g g}(x)$

Write Kernel as power series in $\alpha_{s}: K=\sum_{n=0} \hat{\alpha}^{n} K_{n} \quad \hat{\alpha}=\alpha_{\mathrm{s}} / 2 \pi$
First order ($L L x-L O$) has two parts:

$$
K_{0}(\gamma, \omega)=\underbrace{\frac{2 C_{A}}{\omega} \chi_{0}^{\omega}(\gamma)}_{\text {BFKL }(\text { LLx })}+\underbrace{\left[\Gamma_{g g, 0}(\omega)-\frac{2 C_{A}}{\omega}\right] \chi_{c}^{\omega}(\gamma)}_{\text {finite-x DGLAP }(\text { LO })}
$$

$$
\text { use Mellin transforms: } \gamma \leftrightarrow k^{2}, \omega \leftrightarrow \ln 1 / x, \Gamma_{g g, 0}(\omega) \leftrightarrow P_{g g}(x)
$$

BFKL piece has usual transverse structure with kinematic constraint
$\chi_{0}^{\omega}(\gamma)=2 \psi(1)-\psi(\gamma)-\psi(1+\omega-\gamma)$ Note symmetry $\gamma \leftrightarrow 1-\gamma+\omega$
Multiplied by $\alpha_{\mathrm{s}}\left(q^{2}\right), \vec{q}=\vec{k}-\vec{k}^{\prime}$

DGLAP remainder piece has a collinear kernel:

$$
\chi_{c}^{\omega}(\gamma)=\frac{1}{\gamma}+\frac{1}{1+\omega-\gamma}
$$

Multiplied by $\alpha_{\mathrm{s}}\left(k_{>}^{2}\right)$

Write Kernel as power series in $\alpha_{\mathrm{s}}: K=\sum_{n=0} \hat{\alpha}^{n} K_{n} \quad \hat{\alpha}=\alpha_{\mathrm{s}} / 2 \pi$
First order ($L L x-L O$) has two parts:

$$
K_{0}(\gamma, \omega)=\underbrace{\frac{2 C_{A}}{\omega} \chi_{0}^{\omega}(\gamma)}_{\text {BFKL }(\text { LLx } x)}+\underbrace{\left[\Gamma_{g g, 0}(\omega)-\frac{2 C_{A}}{\omega}\right] \chi_{c}^{\omega}(\gamma)}_{\text {finite-x DGLAP }(\text { LO })}
$$

use Mellin transforms: $\gamma \leftrightarrow k^{2}, \omega \leftrightarrow \ln 1 / x, \Gamma_{g g, 0}(\omega) \leftrightarrow P_{g g}(x)$
Next order (NLx-NLO) also has two parts:

$$
K_{1}(\gamma, \omega)=\frac{\left(2 C_{A}\right)^{2}}{\omega} \tilde{\chi}_{1}^{\omega}(\gamma)+\tilde{\Gamma}_{g g, 1}(\omega) \chi_{c}^{\omega}(\gamma)
$$

with $\tilde{\chi}_{1}$ and $\tilde{\Gamma}_{g g, 1}(\omega)$ adjusted so as to reproduce NLx BFKL and NLO DGLAP.

Green fn. from improved kernel

First tried in '03, without NLO DGLAP piece.

Two schemes, to estimate degree of stability

- scheme A violates mom. sum-rule at $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$
- scheme B satisfies it at all orders

Solve double-integral eqn with each.

Different schemes \rightarrow similar results

Construct a gluon density from Green function (take $k \gg k_{0}$):

$$
x g\left(x, Q^{2}\right) \equiv \int^{Q} d^{2} k G^{\left(\nu_{0}=k^{2}\right)}\left(\ln 1 / x, k, k_{0}\right)
$$

Numerically solve equation for effective splitting function, $P_{g g, \text { eff }}\left(z, Q^{2}\right)$

Construct a gluon density from Green function (take $k \gg k_{0}$):

$$
x g\left(x, Q^{2}\right) \equiv \int^{Q} d^{2} k G^{\left(\nu_{0}=k^{2}\right)}\left(\ln 1 / x, k, k_{0}\right)
$$

Numerically solve equation for effective splitting function, $P_{g g, e f f}\left(z, Q^{2}\right)$:

$$
\frac{d g\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int \frac{d z}{z} P_{g g, \mathrm{eff}}\left(z, Q^{2}\right) g\left(\frac{x}{z}, Q^{2}\right)
$$

Factorisation

-Solitting function:

- Green function:

Construct a gluon density from Green function (take $k \gg k_{0}$):

$$
x g\left(x, Q^{2}\right) \equiv \int^{Q} d^{2} k G^{\left(\nu_{0}=k^{2}\right)}\left(\ln 1 / x, k, k_{0}\right)
$$

Numerically solve equation for effective splitting function, $P_{g g, e f f}\left(z, Q^{2}\right)$:

$$
\frac{d g\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int \frac{d z}{z} P_{g g, \mathrm{eff}}\left(z, Q^{2}\right) g\left(\frac{x}{z}, Q^{2}\right)
$$

Factorisation

- Splitting function:
red paths
- Green function:
all paths

Altarelli, Ball \& Forte have also calculated effective $P_{g g}$:

- similar physical ingredients
- completely different 'implementation'
Main features similar between CCSS \& ABF.

In particular splitting-fn has dip at $x \sim 10^{-3}$.

BFKL is naturally single-channel Only gluon production has $1 / x$ divergence DGLAP is multi-channel Quarks and gluons both have collinear divergences

So far we had ignored the multi-channel aspect, for simplicity. But:

- If we are to use small- x resummed splitting functions, we need the whole singlet matrix
- Including quarks in evolution may provide a convenient way of resumming collinear logs in impact factors

Generalise double-integral eq ${ }^{\mathrm{n}}$ to two channels
Add flavour indices to Green function and kernel

BFKL is naturally single-channel Only gluon production has $1 / x$ divergence DGLAP is multi-channel Quarks and gluons both have collinear divergences

So far we had ignored the multi-channel aspect, for simplicity. But:

- If we are to use small- x resummed splitting functions, we need the whole singlet matrix
- Including quarks in evolution may provide a convenient way of resumming collinear logs in impact factors

Generalise double-integral eq ${ }^{\mathrm{n}}$ to two channels
Add flavour indices to Green function and kernel

$$
G_{a b}\left(x, k^{2}, k_{0}^{2}\right)=\delta^{2}\left(k-k_{0}\right) \delta_{a b}+\int d z \int d k^{\prime 2} \frac{d k^{\prime 2}}{k^{\prime 2}} K_{a c}\left(z, k, k^{\prime}\right) G_{c b}\left(x / z, k^{\prime 2}, k_{0}^{2}\right)
$$

Symmetry and subtleties

DGLAP limit

$$
\ldots \Gamma_{d c} \Gamma_{c b} \Gamma_{b a} \ldots
$$

anti-DGLAP limit

$$
\begin{aligned}
& \text { it } \ldots \Gamma_{c d} \Gamma_{b c} \Gamma_{a b} \ldots \\
& =\ldots\left(\Gamma^{T}\right)_{d c}\left(\Gamma^{T}\right)_{c b}\left(\Gamma^{T}\right)_{b a} \ldots
\end{aligned}
$$

Want to encode two strongly ordered collinear limits

Suggests sym. $K(\gamma, \omega)=K^{T}(1+\omega-\gamma, \omega)$. But this \rightarrow spurious colour \& $1 / \omega$ structures, e.g. $\alpha_{s}^{2} C_{F}^{2} / \omega^{2}$ for $g \rightarrow q \rightarrow g$, in non-ordered limits.

DGLAP attaches $1 / \omega$ and colour sum to leg with higher p_{t} BFKL attaches them to left-hand leg - inconsistent

Sensibleness requirement on matrix formulation.
Use similarity transform S to reattach colour and $1 / \omega$ factors in anticollinear limit, so as to restore compatibility between DGLAP and BFKL. Resulting symmetry is

$$
\mathcal{K}(1+\omega-\gamma, \omega)=S(\omega) \mathcal{K}^{T}(\gamma, \omega) S^{-1}(\omega)
$$

Choose S, for convenience, such that

$$
\mathcal{K}^{T}(\gamma, \omega)=S(\omega) \mathcal{K}^{T}(\gamma, \omega) S^{-1}(\omega) \Longrightarrow \mathcal{K}(1+\omega-\gamma, \omega)=\mathcal{K}(\gamma, \omega)
$$

Other requirements

Sensibleness requirement on matrix formulation.
Use similarity transform S to reattach colour and $1 / \omega$ factors in anticollinear limit, so as to restore compatibility between DGLAP and BFKL. Resulting symmetry is

$$
\mathcal{K}(1+\omega-\gamma, \omega)=S(\omega) \mathcal{K}^{T}(\gamma, \omega) S^{-1}(\omega)
$$

Choose S, for convenience, such that

$$
\mathcal{K}^{T}(\gamma, \omega)=S(\omega) \mathcal{K}^{T}(\gamma, \omega) S^{-1}(\omega) \Longrightarrow \mathcal{K}(1+\omega-\gamma, \omega)=\mathcal{K}(\gamma, \omega)
$$

Other requirements

- $K_{q q}, K_{q g}$ should be free of $1 / \omega$ divergences at all orders
- $K_{g q}, K_{g g}$ may at most have $1 / \omega$ divergences
- No terms in $K_{a b}$ should have any collinear divergence stronger than $1 / \gamma$.

Structure quite similar to single-channel; LLx-LO is:
$\mathcal{K}_{0}(\gamma, \omega)=\left(\begin{array}{cc}\Gamma_{q q, 0}(\omega) \chi_{c}^{\omega}(\gamma) & \Gamma_{q g, 0}(\omega) \chi_{c}^{\omega}(\gamma)+\Delta_{q g}(\omega) \chi_{\mathrm{ht}}^{\omega}(\gamma) \\ \Gamma_{g q, 0}(\omega) \chi_{c}^{\omega}(\gamma) & \Gamma_{g g, 0}(\omega) \chi_{c}^{\omega}(\gamma)+\frac{2 C_{A}}{\omega}\left[\chi_{0}^{\omega}(\gamma)-\chi_{c}^{\omega}(\gamma)\right]\end{array}\right)$
modifying the higher-twist part of the $\mathcal{K}_{q g}$ kernel.

Higher orders:
Ad' on " $_{1}(\gamma, \omega)$ to get NLx-NLO.

Structure quite similar to single-channel; LLx-LO is:

$$
\mathcal{K}_{0}(\gamma, \omega)=\left(\begin{array}{cc}
\Gamma_{q q, 0}(\omega) \chi_{c}^{\omega}(\gamma) & \Gamma_{q g, 0}(\omega) \chi_{c}^{\omega}(\gamma)+\Delta_{q g}(\omega) \chi_{\mathrm{ht}}^{\omega}(\gamma) \\
\Gamma_{g q, 0}(\omega) \chi_{c}^{\omega}(\gamma) & \Gamma_{g g, 0}(\omega) \chi_{c}^{\omega}(\gamma)+\frac{2 C_{A}}{\omega}\left[\chi_{0}^{\omega}(\gamma)-\chi_{c}^{\omega}(\gamma)\right]
\end{array}\right)
$$

Note $\Delta_{q g}(\omega)$ term: allows one to set factorisation scheme at NLO, by modifying the higher-twist part of the $\mathcal{K}_{q g}$ kernel.

Without having to add $\alpha_{\mathrm{s}}^{2} / \omega$ term to $\mathcal{K}_{1, q g}$
NB: We choose $\overline{M S}$
Higher orders:
Add on $\mathcal{K}_{1}(\gamma, \omega)$ to get NLx-NLO.

Structure quite similar to single-channel; LLx-LO is:

$$
\mathcal{K}_{0}(\gamma, \omega)=\left(\begin{array}{cc}
\Gamma_{q q, 0}(\omega) \chi_{c}^{\omega}(\gamma) & \Gamma_{q g, 0}(\omega) \chi_{c}^{\omega}(\gamma)+\Delta_{q g}(\omega) \chi_{\mathrm{ht}}^{\omega}(\gamma) \\
\Gamma_{g q, 0}(\omega) \chi_{c}^{\omega}(\gamma) & \Gamma_{g g, 0}(\omega) \chi_{c}^{\omega}(\gamma)+\frac{2 C_{A}}{\omega}\left[\chi_{0}^{\omega}(\gamma)-\chi_{c}^{\omega}(\gamma)\right]
\end{array}\right)
$$

Note $\Delta_{q g}(\omega)$ term: allows one to set factorisation scheme at NLO, by modifying the higher-twist part of the $\mathcal{K}_{q g}$ kernel.

Without having to add $\alpha_{\mathrm{s}}^{2} / \omega$ term to $\mathcal{K}_{1, q g}$
NB: We choose $\overline{\mathrm{MS}}$
Higher orders:

- Add on $\mathcal{K}_{1}(\gamma, \omega)$ to get NLx-NLO.
- put in extra higher-twist piece in $\mathcal{K}_{0}(\gamma, \omega)$ to get $\alpha_{\mathrm{s}}^{3} / \omega^{2}$ scheme-dependent terms ($\mathrm{NL} x-\mathrm{NLO}^{+}$).

Known limitations

- $\overline{\text { MS }}$ scheme for $\alpha_{\mathrm{s}}^{n} / \omega^{n-1}$ terms in $P_{q q}, P_{q g}, P_{g g}$ only set up to some fixed order (NLO, NNLO), even though known [Catani \& Hautmann '94] to all orders. Believed to be no larger than renorm-scale uncertainties Based on study of $P_{g g}$, CCSS '06

Formalism 'predicts' that at NLx accuracy, at NNLO

But true $\overline{\mathrm{MS}}\left[\mathrm{MVV}\right.$ '04] result differs by an N_{c}-suppressed term

Not understood, but numerically tiny $<0.5 \%$

Known limitations

- $\overline{\text { MS }}$ scheme for $\alpha_{\mathrm{s}}^{n} / \omega^{n-1}$ terms in $P_{q q}, P_{q g}, P_{g g}$ only set up to some fixed order (NLO, NNLO), even though known [Catani \& Hautmann '94] to all orders. Believed to be no larger than renorm-scale uncertainties Based on study of $P_{g g}$, CCSS '06
- Formalism 'predicts' that at NLx accuracy, at NNLO

$$
\Gamma_{g q, 2}^{\mathrm{NL} x}=\frac{C_{F}}{C_{A}} \Gamma_{g g, 2}^{\mathrm{NL} x}
$$

But true $\overline{M S}\left[M V V\right.$ '04] result differs by an N_{c}-suppressed term

$$
\Gamma_{g q, 2}^{\mathrm{NLX}}=\frac{C_{F}}{C_{A}}\left[\Gamma_{g g, 2}^{\mathrm{NLX}}-\frac{n_{f}}{N_{c} \omega^{2}}\right]
$$

Not understood, but numerically tiny $<0.5 \%$

Intercept at fixed coupling

Power of growth of cross-sections and splitting functions at fixed coupling. Rather similar to 2003 results:

Green function for gluon is very similar to 2003 results. Scale uncertainties (band) under control

Additionally generate quark component, with same power-growth, but suppressed by $\sim \alpha_{\mathrm{s}}$.

Scale uncertainties larger

- radiative generation

NNLO part of NLx scheme terms $\left(\mathrm{NLO}^{+}\right)$have little impact.

Splitting functions

In $g g$ channel results again similar to those from 2003
$g q$ channel rather similar to $g g$

Both have dip at $x \sim 10^{-3}$
$q q$ and $q g$ channels have barely any dip, and large scale uncertainties - NLx is first order of generation of small-x quarks.

Conclusions, outlook

- Have matrix double integral equation that contains both NLx BFKL and NLO DGLAP in $\overline{M S}$ scheme.
- From it one can deduce Green functions and matrix of effective small-x resummed splitting functions.
- Gluon-channel results agree with earlier resummations, now also get full singlet matrix.

Many options open for future

- providing splitting functions in convenient form for general use - understanding what happens at NNLO

Conclusions, outlook

- Have matrix double integral equation that contains both NLx BFKL and NLO DGLAP in $\overline{M S}$ scheme.
- From it one can deduce Green functions and matrix of effective small-x resummed splitting functions.
- Gluon-channel results agree with earlier resummations, now also get full singlet matrix.

Many options open for future

- providing splitting functions in convenient form for general use
- understanding what happens at NNLO
- extending treatment to coefficient functions

EXTRAS

Examine $\bar{\alpha}_{\mathrm{s}} \chi(\gamma)$
minimum $=B F K L$ power

$$
\chi(\gamma)=\underbrace{\chi_{0}(\gamma)}_{L L}+\underbrace{\bar{\alpha}_{\mathrm{s}} \chi_{1}(\gamma)}_{N L L}+\ldots
$$

Examine $\bar{\alpha}_{\mathrm{s}} \chi(\gamma)$
minimum $=B F K L$ power

$$
\chi(\gamma)=\underbrace{\chi_{0}(\gamma)}_{L L}+\underbrace{\bar{\alpha}_{\mathrm{s}} \chi_{1}(\gamma)}_{N L L}+\ldots
$$

- NLL terms pathologically large. minimum \rightarrow max. (unstable) oscillating X-sctns, ...

Examine $\bar{\alpha}_{\mathrm{s}} \chi(\gamma)$
minimum $=B F K L$ power

$$
\chi(\gamma)=\underbrace{\chi_{0}(\gamma)}_{L L}+\underbrace{\bar{\alpha}_{\mathrm{s}} \chi_{1}(\gamma)}_{N L L}+\ldots
$$

- NLL terms pathologically large. minimum \rightarrow max. (unstable) oscillating X -sctns, ...
- Culprit: \perp DGLAP logs

$$
\frac{\bar{\alpha}_{\mathrm{s}}}{\gamma}-\frac{11}{12} \frac{\bar{\alpha}_{\mathrm{s}}^{2}}{\gamma^{2}}+\ldots \gamma_{\left[\gamma^{-1} \Leftrightarrow \ln Q^{2}\right]}
$$

Examine $\bar{\alpha}_{\mathrm{s}} \chi(\gamma)$
minimum $=B F K L$ power

$$
\chi(\gamma)=\underbrace{\chi_{0}(\gamma)}_{L L}+\underbrace{\bar{\alpha}_{\mathrm{s}} \chi_{1}(\gamma)}_{N L L}+\ldots
$$

- NLL terms pathologically large. minimum \rightarrow max. (unstable) oscillating X -sctns, ...
- Culprit: \perp DGLAP logs

$$
\left.\frac{\bar{\alpha}_{\mathrm{s}}}{\gamma}-\frac{11}{12} \frac{\bar{\alpha}_{\mathrm{s}}^{2}}{\gamma^{2}}+\ldots \gamma^{-1} \Leftrightarrow \ln Q^{2}\right]
$$

- Known at all orders $(\gamma \rightarrow 0)$ $\approx \frac{\bar{\alpha}_{\mathrm{s}}}{\bar{\alpha}_{\mathrm{s}}+\gamma}$
'Rotated $\gamma(N)$ '

Building up the kernel. . .

Examine $\bar{\alpha}_{\mathrm{s}} \chi(\gamma)$
minimum $=B F K L$ power

$$
\chi(\gamma)=\underbrace{\chi_{0}(\gamma)}_{L L}+\underbrace{\bar{\alpha}_{s} \chi_{1}(\gamma)}_{N L L}+\ldots
$$

- NLL terms pathologically large. minimum \rightarrow max. (unstable) oscillating X-sctns, ...
- Culprit: \perp DGLAP logs

$$
\frac{\bar{\alpha}_{\mathrm{s}}}{\gamma}-\frac{11}{12} \frac{\bar{\alpha}_{\mathrm{s}}^{2}}{\gamma^{2}}+\ldots{ }_{\left[\gamma^{-1} \Leftrightarrow \ln Q^{2}\right]}
$$

- Known at all orders $(\gamma \rightarrow 0)$ $\approx \frac{\bar{\alpha}_{\mathrm{s}}}{\bar{\alpha}_{\mathrm{s}}+\gamma} \quad$ 'Rotated $\gamma(N)^{\prime}$
- Symmetry $\gamma \leftrightarrow N-\gamma$

Examine $\bar{\alpha}_{s} \chi(\gamma)$
minimum $=B F K L$ power

$$
\chi(\gamma)=\underbrace{\chi_{0}(\gamma)}_{L L}+\underbrace{\bar{\alpha}_{\mathrm{s}} \chi_{1}(\gamma)}_{N L L}+\ldots
$$

Assemble all constraints:

stable, sensible kernel

Ciafaloni, Colferai, GPS \& Staśto; Altarelli, Ball \& Forte; '99-'05

$$
\begin{gathered}
S=\left(\begin{array}{cc}
2 n_{f} N_{c} f_{q}(\omega) & 0 \\
0 & \left(N_{c}^{2}-1\right) f_{g}(\omega)
\end{array}\right), \\
\bar{\Gamma}=S \Gamma^{T} S^{-1}=\left(\begin{array}{cc}
\Gamma_{q q} & \frac{n_{f}}{C_{F}} \frac{f_{q}(\omega)}{f_{g}(\omega)} \Gamma_{g q} \\
\frac{C_{F}}{n_{f}} \frac{f_{g}(\omega)}{f_{q}(\omega)} \Gamma_{q g} & \Gamma_{g g}
\end{array}\right) . \\
\mathcal{K} \simeq \frac{\Gamma}{\gamma}+\frac{\bar{\Gamma}}{1+\omega-\gamma}, \\
f_{q}(\omega)=\frac{2 T_{R}}{\omega+3} \Longrightarrow \quad \bar{\Gamma}=\Gamma,
\end{gathered}
$$

Higher-order kernel

$$
\begin{gathered}
\mathcal{K}\left(\alpha_{s}, \gamma, \omega\right) \equiv \sum_{n, m, p=0}^{\infty}{ }_{p} \mathcal{K}_{n}^{(m)} \hat{\alpha}^{n+1} \gamma^{m-1} \omega^{p-1}, \quad \hat{\alpha} \equiv \frac{\alpha_{s}}{2 \pi} \\
\mathcal{K}_{1}=\left(\Gamma_{1}-\mathcal{K}_{0}^{(1)} \mathcal{K}_{0}^{(0)}\right) \chi_{c}^{\omega}+\left(2 C_{A}\right)^{2}\left(\frac{1}{\omega}-\frac{2}{1+\omega}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & \tilde{\chi}_{1}^{\omega}-\tilde{\chi}_{1}^{(0)} \chi_{c}^{\omega}
\end{array}\right) \\
\tilde{\chi}_{1}^{\omega=0} \equiv \tilde{\chi}_{1}=\frac{0 \mathcal{K}_{g g, 1}}{\left(2 C_{A}\right)^{2}}=K_{1}^{\mathrm{BFKL}}-\frac{\left[0 \mathcal{K}_{0}{ }_{1} \mathcal{K}_{0}\right]_{g g}}{\left(2 C_{A}\right)^{2}}
\end{gathered}
$$

