<u>e⁺e⁻ \rightarrow hadrons Cross Sections at BaBar</u>

David Muller SLAC

Representing the BaBar Collaboration

- Introduction
- Exclusive Reactions at E_{CM} = 10.6 GeV
- Exclusive Reactions at Low E_{CM} via Radiative Return (ISR)
- Inclusive ISR Measurement at Low/Medium E_{CM}

• Summary

- Low E_{CM}: resonances, quasi-2-,3-body reactions, ... → lots of physics: spectroscopy, form factors, QCD tests, ...
- Also near \overline{cc} , \overline{bb} thresholds (and the Z^0)
- High E_{CM} : perturbative QCD; $e^+e^- \rightarrow \gamma^* \rightarrow q\overline{q}(g) \rightarrow jets$ \rightarrow QCD predicts E_{CM} dependence of "rare" few-body processes

• Theoretical g_{μ} -2, $\alpha(M_z)$ need integral, better data for E_{CM} <10 GeV

The BaBar Experiment

- e⁺e⁻ collisions at 10.6 GeV, designed for CP violation in B decays
- Different beam energies:
 - $\rightarrow E_{e^-} = 9.0 \text{ GeV}$
 - $\rightarrow E_{e^+} = 3.1 \text{ GeV}$
 - \rightarrow c.m.-lab boost, $\gamma\beta$ =0.55
- Asymmetric detector
 → c.m. frame acceptance
 -0.9 ~ cosθ* ~ 0.85
 wrt e⁻ beam

- with excellent performance
 - → Good tracking, mass resolution
 - \rightarrow Good γ , π^0 recon.
 - \rightarrow Full e,µ, π ,K,p ID

- High luminosity:
 - \rightarrow ~ 460 fb⁻¹ accumulated
 - \leftrightarrow 1.6 billion $e^+e^- \rightarrow q\overline{q}$ evts
 - \rightarrow 89–379 fb⁻¹ used here

Exclusive reactions at 10.6 GeV

- Select events with a specific set of \rightarrow identified charged tracks \rightarrow well measured photons \rightarrow reconstructed π^0
- Look at their combined invariant mass, momentum, etc.

<u>η and η' Transition Form Factors</u> 232 fb⁻¹, PRD 74, 012002 (06)

- The cross section for $e^+e^- \rightarrow \gamma * \rightarrow \eta^{(\prime)}\gamma$ is related to a TFF
 - \rightarrow QCD prediction for asymptotic value
 - \rightarrow model predictions for s dependence at low s
- Our time-like vs. CLEO space-like measurements

- → consistent with approach to asymptotic regime
- \rightarrow and with model predictions ... which depend on η - η ' mixing ...
- → ...but ratio is not (very) consistent ...
- ⇒ more theoretical, experimental input needed

Two-Virtual-Photon Annihilation 225 fb⁻¹, PRL 97, 112002 (06)

• The $\pi^+\pi^-\pi^+\pi^-$ and $K^+K^-\pi^+\pi^-$ modes show clear signals for $e^+e^- \rightarrow \rho^0\rho^0$ and $e^+e^- \rightarrow \rho^0\phi$, respectively

These have C = +1

- \rightarrow forbidden in single $\gamma *$ annihilation
- \rightarrow allowed (and expected at ~this level) in 2- γ * annihilation (TVPA)
- \rightarrow can check angular distributions...

TVPA predicts strongly forward-peaked production angles

consistent with vector-dominance prediction

hep-ph/0606155

<u>One- (and Two?)-VPA in $e^+e^- \rightarrow \rho^+\rho^-$ </u>

- 379 fb⁻¹, Prelimnary
- The $\pi^+\pi^-\pi^0\pi^0$ mode shows a clear signal for $e^+e^- \rightarrow \rho^+\rho^-$
 - \rightarrow allowed via a single $\gamma *$
 - → TVPA could also contribute via final state rescattering,
 - → (fiducial) cross section of 8.5±0.7±1.5 fb oddly(?) similar to that for $\rho^0 \rho^0$
- Angular distribution study
 - → shows contributions from at least 2 of the 3 allowed helicity states, 00, 01, 11
 - → inconsistent with a QCD prediction of 00 dominance PRD 24, 2848 (81)

Initial State Radiation in e⁺e⁻ Annihilations

- The radiator function W is known to <1%
- Measure $\sigma(e^+e^- \rightarrow X)$ as a fcn. of $m_{\gamma*}=m_X=E_{CM}=\sqrt{s'}$
- Features:
 - → access to wide s' range
 - very small point-to-point systematic errors
 - $\rightarrow \gamma_{\text{ISR}} \text{ detected} \leftrightarrow \text{hadron} \\ \text{system contained}$
 - → measure all the way down to threshold

- $\bullet \ e^+ e^- \rightarrow \ \gamma_{\text{ISR}} e^+ e^- \rightarrow \ \gamma_{\text{ISR}} \gamma * \rightarrow \ \gamma_{\text{ISR}} X$
- X is any allowed hadronic system
- cross section: $\frac{d\sigma(s,s',\theta_{\gamma})}{ds'dcos\theta_{\gamma}} = W(s,s',\theta_{\gamma}) \cdot \sigma(s')$

- Disadvantages:
 - → mass resolution >beam-E spread
 → requires very high luminosity

<u>ISR Analysis Method; $e^+e^- \rightarrow p\overline{p}$ </u>

• Event selection:

- → require exact topology;
- → perform kinematic fits, 4-p conservation
- \rightarrow select good events;

 $\chi^2_{pp\gamma} < 20$

240 fb⁻¹, PRD 73, 012005 (06)

• Evaluate, suppress and subtract backgrounds in \rightarrow Other ISR processes; $\pi^+\pi^ \rightarrow$ Feeddown from 10.6 GeV; using measured cross sects, ID'd π ,K, $\chi^2_{KK\gamma}, \chi^2_{\pi\pi\gamma}, \pi^0$ peak, ... in data

 $\pi^{+}\pi^{-}, K^{+}K^{-}, \pi^{+}\pi^{-}\pi^{0}, ...$ $e^{+}e^{-} \rightarrow pp\pi^{0}, ...$

-0.5

- \rightarrow but consistent at high E_{CM}
- \rightarrow inconsistent with PS170

0.5

 $\cos \theta_n$

 $\frac{2.75}{M_{p\overline{p}} (GeV/c^2)}$

2.5

2.25

David Muller

89 fb⁻¹ PRD 70, 072004 (04)

 \rightarrow dominated by resonances: ω , ϕ , J/ ψ , ...plus excited ω ?

- \rightarrow consistent with previous, precise data in ω/ϕ region
- \rightarrow inconsistent with DM2 data at 1.35–2 GeV
- \Rightarrow can interpret in terms of excited ω resonances

 \rightarrow "best" measurements of $\omega',\,\omega''$

 \rightarrow ...though relative phases must be assumed

	-				
	Mass (MeV/c ²)	Γ (MeV)	$ B_{ee} \times B_{3\pi} (\times 10^{-6}) $	$\phi - \phi_{\omega}$	
ω	782	8.7	67.0 ±2.8	—	fixed to world average values
¢	1019	4.3	43.0 ±2.2	163°	fitted
ω	1350±28	450±98	0.82±0.08	180°	fixed to
ω‴	1660±10	230±36	1.30±0.14	0 °	assumed values

- Dominated by ωπ⁰ and a₁(1260)π channels
 → as seen previously
- We also observe $\rho^0 f_0$ and $\rho^+ \rho^- \rightarrow unexpected?$
 - → working on extracting the $\rho^+\rho^-$ cross section vs. E_{CM}
 - → ...further nice tests of QCD, especially when connected with the msmt at 10.6 GeV

- \rightarrow several hints of structure, e.g. at ~2 GeV $\leftrightarrow \phi f_0(980)$ threshold
- \rightarrow since ϕ , f₀(980) are both narrow, this submode can be studied...

- The $\phi f_0(980)$ submode:
 - \rightarrow visible in m_{KK} vs. m_{$\pi\pi$} scatter plots
 - \rightarrow extract yield by fitting the m_{KK} distribution in each \tilde{E}_{CM} bin in a $m_{\pi\pi}$ slice around the f_0 mass

 \rightarrow background from $\phi \pi \pi < 10\%$

2.25

2.5

 \rightarrow threshold behavior inconsistent with a typical, smooth function

Events/0.025 GeV/c²

40

20

- Convert to cross sections
 - → behavior near threshold unchanged
 - $\rightarrow \pi^+\pi^-$ and $\pi^0\pi^0$ modes give consistent results
 - → can be described by adding a resonance; a fit yields:
 - $m = 2175 \pm 18 \text{ MeV/c}^2$
 - $\Gamma = 58\pm 26 \text{ MeV}$
 - $\phi = -36 \pm 56^{\circ}$

wrt non-res

 5.6σ significance

- \rightarrow very interesting mass region, just below $\Lambda\overline{\Lambda}$ threshold
- \rightarrow is this a new state?
- \rightarrow is it analogous to the Y(4260)?
- \rightarrow need more data, other modes to understand structure in detail

<u>e⁺e⁻→ π⁺π⁻π⁺π⁻π⁺π⁻, π⁺π⁻π⁺π⁻π⁰π⁰ 232 fb⁻¹ PRD 73, 052003 (06)</u> • Cross sections

→ large improvements in both measurements

- → dips at ~1950 MeV confirmed; also seen by FOCUS
- \rightarrow ... but resonance fits give inconsistent parameters
- \Rightarrow is this the "same" as the dip in the $\pi^+\pi^-\pi^0\pi^0$ modes?
- \Rightarrow or is something(s) else going on?

- The $2(\pi^+\pi^-)\pi^0\pi^0:3(\pi^+\pi^-)$ ratio \rightarrow is flat and ...
 - → =4 except where the ωη submode contributes
 - → a challenge since the former/latter has very little/ rich substructure
- The ωη submode
 - → is easy to isolate, use sidebands to subtract background
 - → the cross section is dominated by two resonances, J/ψ and something with $m = 1645\pm 8 \text{ MeV/c}^2$ $\Gamma = 114\pm 14 \text{ MeV}$
 - ⇒ is it the ω(1650)? (Γ=315) ...or the φ(1680)? ...or something new...?

Inclusive Cross Section via ISR

- Can we measure the total e⁺e[−]→hadrons cross section with ISR?
 → select events with a hard photon recoiling against "stuff"
 - → problem: photon energy resolution is not great

 \rightarrow but we can measure the integral nicely in the $q\overline{q}$ region

- \rightarrow ...and the integral convolved with the kernel for $\alpha_{QED}(M_Z^2)$
- \rightarrow (but the g_u-2 kernel is too sharply peaked...)

Let's see what we can do ...
 → applying some simple selection criteria, backgrounds are high

→ strategy: keep well understood radiative $\mu^+\mu^-$ and $\tau^+\tau^-$ events, subtract them later

- → use data to characterize, suppress and measure the remaining background from qq events
- \rightarrow much work on detector response to photons, π⁰, η, η', ω, K_L, neutrons, event shapes, other backgrounds, ...

The current status is ...

→ backgrounds are now manageable, but must be understood very well before subtraction

- → this is in progress; we expect a 3.5-4.5% measurement of the hadronic contribution to $\alpha_{QED}(M_Z^2)$ from s'<6.5 GeV
- → current errors are 15 (6)% in the 1-2 (2-5) GeV region, so this measurement should be quite useful

<u>Summary</u>

- The very high luminosity of the B factories has (re)opened several interesting areas of elementary particle physics
- Using exclusive reactions at 10.6 GeV:
 - \rightarrow first observation of e⁺e⁻ annihilations via 2 γ *
 - $\rightarrow \eta$, η' form factors in asymptotic region
 - → new tests of QCD
- Using initial state radiation:
 - \rightarrow improved knowlege of R, g_µ-2, α (M_Z)
 - \rightarrow improved spectroscopy of ω , ϕ states
 - \rightarrow improved proton form factors, find G_E>G_M at low E_{CM}
 - \rightarrow new/improved spectroscopy at ~1900, 2175, 1650 MeV
- Many new, improved studies planned
 - \rightarrow update results with full data set
 - \rightarrow more exclusive modes at low and high E_{CM}

Backup Slides

→ fitted parameter values for our two modes are consistent

 \rightarrow combined:

m = 1870±20 MeV/c², Γ = 150±20 MeV, $\delta \phi$ = 9±15°

→ the width is significantly larger than seen by FOCUS, m = 1910±10 MeV/c², Γ = 37±13 MeV