International Symposium on Multiparticle Dynamics, Berkeley, CA, USA

Particle production in DIS and photoproduction from *ep* collisions

Anna Galas on behalf of ZEUS+H1

Institute of Nuclear Physics Polish Academy of Sciences ul. Radzikowskiego 152, 31-342 Kraków, Poland

August 2007

Measurement of K_{s}^{0} , Lambda, Antilambda Production at HERA

hep-ex/0612023, European Physical Journal C 51 (2007) 1-23

Bose-Einstein Correlations of Charged and Neutral Kaons in Deep Inelatsic Scattering at HERA

hep-ex/0706.2538, published online in Physics Letters B

Charged Particle Production in High Q² Deep Inelastic Scattering at HERA

hep-ex/0706.2456, submitted to Physics Letters B

ep collisions at HERA

 $ep \rightarrow e'X$ collisions at HERA give informations about soft and hard processes. @ HERA: e^{\pm} (27.6 GeV) + p (820/920 GeV) $\sqrt{s} = \sqrt{4E_e E_p} = 300/318 \ GeV$ where E_e , E_p are energies of e and pbeams.

Tha data presented here were taken during: 1996-2000 ($L = 121 \ pb^{-1}$) using ZEUS and in 2000 $(L = 44 \ pb^{-1})$ using H1 detector.

Soft QCD processes @HERA can be measured using: $Q^2 > 1 \ GeV^2$

- hadronization (DIS)
- photoproduction (PHP) $Q^2 \sim 0 \ GeV^2$

DIS kinematic variables for $ep \rightarrow e'X$

DIS processes:

▶
$$ep \rightarrow e'X$$
 (Neutral Current)
- exchange γ^* , Z^0

►
$$e^+(e^-)p \rightarrow \nu(\bar{\nu})X$$
 (Charged
Current) - exchange W^+ ,
 W^-

where
$$X$$
 - hadronic final state

P/k the initial-state four momenta of the proton and electron/positron

 $s = (P + k)^2$ the cms energy squared of the *ep* system $W = (P + q)^2$ the cms energy of the γ^* virtual-photon-proton system

The photon virtuality Q^2 and Bjorken variables are defined as:

$$Q^{2} = -q^{2} = -(k - k')^{2}$$
$$x_{B_{J}} = \frac{Q^{2}}{2P \cdot q} \qquad y_{B_{J}} = \frac{P \cdot q}{P \cdot k}$$
$$Q^{2} = s \cdot x_{B_{J}} y_{B_{J}}$$

Photoproduction processes

PHP processes are characterized by quasi-real exchange photon, $\gamma,$ and very small four-momentum-transfer: $Q^2\sim 0~GeV^2$

Examples of leading order diagrams in PHP: (a) direct PHP and (b) resolved PHP.

- direct PHP γ interacts directly with a parton in the proton
- resolved PHP γ behaves as a source of partons, one of which takes part in the interaction with the proton

$$\begin{aligned} \mathbf{x}_{\gamma}^{OBS} &= \frac{\sum_{jets} E_T^{jet} e^{-\eta^{jet}}}{2y_{J_B} E_e} \\ & \mathbf{x}_{\gamma}^{OBS} = 1 \text{ direct PHP} \\ & \mathbf{x}_{\gamma}^{OBS} < 1 \text{ resolved PHF} \end{aligned}$$

K_S^0 , Λ and $\overline{\Lambda}$ identification

Particle	Mass [GeV]	Decay Length [cm]	Main decay
K_s^0	0.497	2.68	π^{+}, π^{-}
Λ	1.112	7.89	<i>p</i> , π ⁻
Ā	1.112	7.89	\bar{p}, π^+

Event requirements:

- primary and secondary vertices well separated
- two secondary vertex tracks with opposite charges

Selection criteria:

- ► $|\eta(K_s^0, \Lambda, \bar{\Lambda})| < 1.2$
- ▶ $0.6 < p_T(K_s^0, \Lambda, \bar{\Lambda}) < 2.5 \ GeV$
- ▶ $M(e^+e^-) > 0.05 \ GeV$
- $K_s^0: M(p\pi) > 1.125 \ GeV$
- $\Lambda/\bar{\Lambda}: M(\pi^+\pi^-) < 0.475 ~GeV$

K_S^0 and $\Lambda + \overline{\Lambda}$ signals

K^{\pm} identification

We used different cuts on $\frac{dE}{dx}$ to select charged kaons and minimalize background from pions.

An example of K^+ selection method

- ► The tracks were accepted if $f < \frac{dE}{dx} < F$, where f, F are functions motivated by Bethe-Bloch equations: $f = \frac{0.08}{p^2} + 1$ $F = \frac{0.17}{p^2} + 1.03$ for K^+ where p is the total track momentum.
- $\frac{dE}{dx} > 1.25$ to minimize background from π
- p < 0.9 GeV to compromise between purity and momentum range (trouble in particle separation for large p)

K_s^0 , Λ and $\overline{\Lambda}$ cross-sections

The cross-section were calculated in the following kinamatic regions:

• $Q^2 > 25 \ GeV^2$ and $0.02 < y_{B_J} < 0.95$

▶ 5 $GeV^2 < Q^2 < 25 GeV^2$ and 0.02 < $y_{B_J} < 0.95$

$$\left. \left. \begin{array}{l} + \left. \begin{array}{l} |\eta^{\mathcal{K}_{s}^{0},\Lambda,\bar{\Lambda}}| < 1.2 \\ 0.6 < \rho_{\mathcal{T}}^{\mathcal{K}_{s}^{0},\Lambda,\bar{\Lambda}} < 2.5 \end{array} \right. \right. \mathcal{G}eV \right. \right. \right.$$

$$\left.\begin{array}{c} 1 \ GeV^2 < Q^2 \ \text{and} \ 0.02 < y_{B_J} < 0.85 \\ (\text{PHP}) \end{array}\right\} + \frac{|\eta^{jet}| < 2.4}{E_T^{jet} > 5 \ GeV} + 2 \ jets$$

$$\frac{d\sigma}{dY}^{K_s^0,\Lambda,\bar{\Lambda}} = \frac{N}{A \cdot \alpha \cdot B \cdot \Delta Y}$$

where:

N - number of K_s^0 , Λ , $\overline{\Lambda}$ in a bin of width ΔY , α - luminosity, *A* - acceptance and *B* - branching ratio

The differential cross-sections were measured as functions of:

 $\blacktriangleright PHP: \\ p_T^{K_s^0,\Lambda,\bar{\Lambda}}, \eta^{K_s^0,\Lambda,\bar{\Lambda}}, x_{\gamma}^{OBS}$

Differential K_s^0 cross-sections

- ARIADNE (λ_s = 0.3) describes data reasonably well
- ARIADNE (λ_s = 0.22) and LEPTO describe the data less satisfactory

 PYTHIA describes the data well

10/21

Differential $\Lambda + \overline{\Lambda}$ cross-sections

- ► ARIADNE (λ_s = 0.3) describes the data reasonably well
- ARIADNE (λ_s = 0.22) and LEPTO do not describe the data well

ISMD 2007: "Particle production in DIS and photoproduction from ep collisions" by Anna Galas

 PYTHIA describes the data well

11/21

Baryon to meson ratio

 ARIADNE (λ_s = 0.3) follows the shape of the data

- Baryon to meson ratio increases at low x^{OBS}_γ up to 0.7, not predicted by PYTHIA
- For x_γ^{OBS} = 1, same baryon to meson ratio as in DIS and e⁺e⁻

BEC between $K_s^0 K_s^0$ and $K^{\pm} K^{\pm}$

Bose-Einstein effect is an enhancement in the production of identical bosons with similar momenta.

BE effect is related to the timespace characteristic of the particle emission source.

In experiment:
$$R(Q_{12}) = \frac{P(Q_{12})}{P_{ref}(Q_{12})}$$

where $Q_{12} = \sqrt{-(\rho_1 - \rho_2)^2} = \sqrt{M^2 - 4m_{boson}^2}$

Standard parametrisation of $R(Q_{12})$ is Goldhaber-like parametrisation:

$$R(Q_{12}) = \alpha(1 + \lambda e^{-Q_{12}^2 \mathbf{r}^2})(1 + \delta Q_{12})$$

The correlation function $R(Q_{12})$ is measured using double ratio method:

 $R(Q_{12}) = rac{P(Q_{12})_{data}}{P_{mix}(Q_{12})_{data}} / rac{P(Q_{12})_{MCnoBEC}}{P_{mix}(Q_{12})_{MCnoBEC}}$

BEC between $K_s^0 K_s^0$

- ▶ 96 00 $e^{\pm}p$ ZEUS data sample $\Rightarrow L = 121 \ pb^{-1}$
- **DIS** events sample: $2 < Q^2 < 15000 \ GeV^2$
- BE effect clearly visible
- r value for $K^0_s K^0_s$ is similar to $\pi^{\pm} \pi^{\pm}$

$$\left. \begin{array}{l} \lambda = 1.16 \pm 0.29(stat) {}^{+0.28}_{-0.08}(sys) \\ r = 0.61 \pm 0.08(stat) {}^{+0.07}_{-0.08}(sys) fm \end{array} \right\} \hspace{1.5cm} \mathcal{K}^0_s \mathcal{K}^0_s \ (\text{ZEUS}) \end{array} \right\}$$

$$\begin{array}{l} \lambda = 0.475 \pm 0.007(\textit{stat})^{+0.011}_{-0.003}(\textit{sys}) \\ r = 0.666 \pm 0.009(\textit{stat})^{+0.022}_{-0.036}(\textit{sys})\textit{fm} \end{array} \right\} \begin{array}{l} \pi^{\pm} \pi^{\pm} \; (\texttt{ZEUS}) \\ \text{Phys. Lett. B583 (2004) 231} \end{array}$$

- good agreement with LEP for r
- higher λ value than for ALEPH, DELPHI
- the f₀(980) resonance is expected in the same low Q₁₂ region where BEC are measured
- small contribution of $f_0(980)$ in data can significantly change λ value

λ corrections for $K_s^0 K_s^0$

- low Q_{12} , $M(K_s^0 K_s^0)$ regions are affected by $f_0(980)$ resonance, not well simulated by ZEUS MC
- the f₀(980) is expected in the same Q₁₂ region where BEC are measured
- the shape of the enhancement in data over MC_{noBEC} is well described by Flatté
- the difference between MC_{noBEC} and MC_{BEC} ($\lambda = 1, r = 0.45 \text{ fm}$) indicates 4% contribution of f₀(980) in data
- using Breit-Wigner distribution we subtracted 4% contribution of f₀(980) from data sample

$$\left. \begin{array}{l} \lambda = 0.70 \pm 0.19(\textit{stat}) {}^{+0.28}_{-0.08} {}^{+0.38}_{-0.52}(\textit{sys}) \\ r = 0.63 \pm 0.09(\textit{stat}) {}^{+0.07}_{-0.08} {}^{+0.09}_{-0.02}(\textit{sys}) \textit{fm} \end{array} \right\} \ 4\% \ f_0(980)$$

- good agreement with LEP for r
- **b** good agreement with LEP for λ
- ALEPH and DELPHI took into account f₀ contribution in theirs studies

where f_0 : derived from Breita-Wignera distribution proposed by Flatté^a: $\frac{d\sigma}{dm_{KK}} = \frac{N_F \cdot m_0^2 \cdot \Gamma_{KK}}{(m_0^2 - m_{KK}^2)^2 + (m_0 \cdot (\Gamma_{\pi\pi} + \Gamma_{KK}))^2}$ ^aPhys. Lett. B63 (1976) 224

15/21

BEC between $K^{\pm}K^{\pm}$

- ▶ 96 00 $e^{\pm}p$ ZEUS data sample $\Rightarrow L = 121 \ pb^{-1}$
- **DIS** events sample: $2 < Q^2 < 15000 \ GeV^2$
- BE effect clearly visible
- r value for $K^{\pm}K^{\pm}$ is similar to $K_s^0K_s^0$ and $\pi^{\pm}\pi^{\pm}$

$$\left. \begin{array}{l} \lambda = 0.37 \pm 0.07(\textit{stat}) {}^{+0.09}_{-0.08}(\textit{sys}) \\ r = 0.57 \pm 0.09(\textit{stat}) {}^{+0.15}_{-0.08}(\textit{sys})\textit{fm} \end{array} \right\} \hspace{1.5cm} \mathcal{K}^{\pm}\mathcal{K}^{\pm} \mbox{ (ZEUS)}$$

$$\begin{array}{l} \lambda = 0.475 \pm 0.007(stat)^{+0.011}_{-0.003}(sys) \\ r = 0.666 \pm 0.009(stat)^{+0.022}_{-0.036}(sys) fm \end{array} \right\} \begin{array}{l} \pi^{\pm} \pi^{\pm} \ (\text{ZEUS}) \\ \text{Phys. Lett. B583 (2004) 231} \end{array}$$

- good agreement with LEP for r
- smaller λ value than for OPAL, DELPHI
- different fragmentation processes in $e^{\pm}p$ (ZEUS) and $e^{+}e^{-}$ (ALEPH, DELPHI, OPAL) collisions
- ZEUS data populate mostly proton fragmentation region - we expect proton influence
- high probability that at least one kaon in kaon-pair is produced in φ(1020) → K⁺K⁻ decay - strong signal in data

Charged particles studies in Brait Frame

- separetes struck quark and proton remnant
- e[±]p current region is analogous to one hemisphere of e⁺e⁻ annihilation
- ► scaled momentum $x_p = \frac{2 \cdot p_h}{Q}$ in $e^{\pm}p$ current region of Breit Frame (QPM model)

where p_h - momentum of charged tracks

▶ in
$$e^+e^-$$
 annihilation $\Rightarrow x_p = \frac{2 \cdot p_h}{E^*}$

scaled momentum distribution $D(x_{\rho}, Q) = \frac{1}{N} \frac{dn}{dx_{\rho}}$

where:

- N total number of selected events
- $\frac{dn}{dr}$ total number of charged tracks with x_p in the interval dx_p

average charged multiplicity < n >

defined as an average number of charged particles in the current region of Brait Frame per event

• • • • •

Charged multiplicity < n >

2000 e^+p H1 data sample $\Rightarrow L = 44pb^{-1}$

Charged particle selection

- ▶ $100 < Q^2 < 20000 \ GeV^2$
- ▶ 0.05 < y < 0.6
- ▶ p_T > 0.12 GeV
- 20° < θ < 165°</p>

(a)

- the ZEUS results are in agreement with H1
- ▶ in low Q region the data are slightly below the e⁺e⁻ parametrisation
- ▶ for highest Q the H1 data are clearly below the e⁺e⁻ parametrisation
- (b)
 - good agreement between different models of hadronisation and parton cascade
 - soft colour interactions model overestimates the multiplicity < n >

Scaled momentum distribution $D(x_p, Q)$

- quite good agreement between e^+p and e^+e^-
- at low x_p significant increase in the number of hadrons from low to high Q
- at high x_p the number of hadrons decreases with $Q \Rightarrow$ this corresponds with less tracks observed in e^+p data than in e^+e^-
- middle x_p and low Q region affected by high order QCD processes (BGF, ICQCD) which occur as a part of hard interactions in e⁺p but not in e⁺e⁻

Scaled momentum distribution $D(x_p, Q)$

Scaled momentum distribution $D(x_p, Q)$ in comparison with Next-to-Leading order NLO QCD CYCLOPS for three different fragmentation functions obtained from fits to e^+e^- data (KKP, KRETZER, AKK).

- all three fragmentation function parametrisations give diffrent results
- none of them can describe the scaling violations seen in H1 data

Summary

- ▶ The measurements of K_s^0 , Λ , $\bar{\Lambda}$ production have been made at ZEUS
- ▶ In high and low Q^2 DIS, ARIADNE generally describes the cross-sections
- **PYTHIA** describes cross-sections in PHP well, except the x_{γ}^{OBS} dependence
- ARIADNE follows the shape of the ratio of baryons to mesons
- \blacktriangleright The baryon to meson ratio increases up to 0.7 at low $x_{\gamma}^{OBS},$ not predicted by <code>PYTHIA</code>
- ▶ The BEC of $K_s^0 K_s^0$ and $K^{\pm} K^{\pm}$ were measured and compared to LEP results
- ▶ The radius value for $K_s^0 K_s^0$ is consistent with $K^{\pm}K^{\pm}$ and with $\pi^{\pm}\pi^{\pm}$
- The radius value is compatible with LEP results
- ▶ λ value for $K_s^0 K_s^0$ is high due to the $f_0(980)$ influence in low Q_{12} region
- Smaller λ for $K^{\pm}K^{\pm}$ in comparison with LEP due to proton influence
- ▶ The average charged multiplicity $\langle n \rangle$ and scaled momentum distribution $D(x_p, Q)$ of charged hadrons at high Q^2 in Breit Frame at H1 and compared with e^+e^- and diffrent MC models
- The results broadly support quark fragmentation universality in e^+p and e^+e^-
- A small multiplicity depletion is observed at low Q due to high order QCD processes occurring as part of hard interaction in e^+p scattering but not in e^+e^- annihilation
- At high Q a large depletion is observed
- ► NLO fails to describe the scaling violations seen in H1 data