ANtarctic Impulsive Transient Antenna

Using the very highest energy astrophysical neutrinos to probe physics beyond the standard model

> Steve Barwick, UCI ISMD, LBL 2007

PHOTONS: not deflected, but: reprocessed in sources, absorbed in IR (100 TeV), and CBR
PROTONS: deflection in magnetic fields, GZK cutoff
NEUTRINOS: not absorbed or deflected, hard to see

Neutrinos are like "canaries in a coal mine"

Neutrinos are most weakly interacting particles that are stable. They can provide an early warning that something in physics is amiss.

EHE Neutrinos Explore Higher Dimensions

(Anchordoqui, et al, hep-ph/0307228)

Cosmogenic (or GZK) Neutrinos

Predictions are secure:

$$p + \gamma_{cmb} \rightarrow \Delta \rightarrow n + \pi^+$$

n -> lower energy protons $\pi \rightarrow \mu + \nu$

However, v-Flux Calculations depend on:

- 1. Elemental composition (p, Fe, mixed)
- 2. Cosmology (Λ =0.7)
- 3. Injection Spectra, $E^{-\gamma}$ and E_{max}
- 4. Evolution of sources with redshift, $(1+z)^m$
 - Star formation, QSO, GRB, little or no

ANITA EeV astronomy

UCI, UHawaii (P. Gorham - PI), UCLA, OSU, JPL, WashU, UMinn, UKansas, UDelaware, SLAC

ANtarctic Impulsive Transient Antenna

www.ps.uci.edu/~anita

 ANITA launched on Dec 15, 2006 and remained aloft for 35 days

Despite unusual flight path, and instrumental issues that reduced livetime for last 12 days of flight, ANITA-1 represents dramatic leap forward

Calibration Chain

- 1. Signal Strength, cone width
- 2. Propagation and Surface
- 3. Angular Resolution
- 4. Detector Operation

SLAC beam Borehole TRX Borehole/Surface TRX Thermal/Sun/Galactic Noise

confirmed

cone and frequency dependence confirmed

In Situ Angular Resolution

Excellent timing and angular resolution

ANITA Calibration using Borehole Pulser

- Absolute Amplitude, A_o, of radio signal is confirmed
- Fresnel effects from ice-air boundary properly modeled

Thermal/Solar/Man-made Noise

Variation due to sun-angle

Analysis Strategy

SLAC Beam Test Data

Willy Ground Pulser Data

- 1. 3 ant top, 3 ant bot >3.5V $_{rms}$ in V $_{pol}$
- 2. Good reconstruction
- Vpol and Hpol compatible with v expectation
- 4. Time profile of waveforms consistent with SLAC and GP
 - a) Not too long or short
 - b) Bandwidth limited charact.
- FFT consistent with uniform power at all frequencies, no strong lines of RFI
- 6. Temporally isolated from similar events
- 7. Avoid "known" sources of RFI

sum of all v flavors

Measuring or Constraining Neutrino Cross-section w/ ANITA

Fenfang Wu, Steve Barwick, for the ANITA Collaboration ICRC, 2007

Event Rates depend on σ

• d²N/dEdt ~
$$2\pi N_A \rho V_{eff} F_v \sigma_{vN}$$

Where:

- N_A = Avogadro's number
- ρ = density of medium
- V_{eff} = effective volume of detector
- F_v = differential neutrino flux per solid angle
- σ_{vN} = neutrino-nucleon cross-section

=
$$\sigma_{\rm cc}$$
+ $\sigma_{\rm nc}$ where $\sigma_{\rm cc}/\sigma_{\rm nc}$ ~ 2 for E_v>10¹⁸eV

Reflected and Direct Events

S. Barwick, Proc. Venice, 2006

Camping at Moore's Bay Site

Moore's Bay Site Studies

Amazing fidelity of reflected pulse from sea-water bottom -behaves as nearly flawless mirror

1-way Field Attenuation-Moore's Bay

Event ID : Reflected or Direct?

- Based on Topology and distance
- Develop likelihood function to separate reflected from direct events

 $E_v = 10^{20} \text{ eV}, R_{ross} = -3 \text{dB}, \sigma = 100\sigma_{sm}$

Direct and Reflected Event Rates

For scenario $N_v=0$

Outlook

- With AMANDA-II, the requisite tools to inaugurate multi-messenger astronomy are available -> IceCube continues this technique.
- To probe the neutrino fluxes and physics at highest energies, new techniques are being developed based on radio cherenkov detection.
- ANITA extends search volume to 10⁶ km³
 - Launched from McMurdo Dec 15, 2006, and remained aloft 35 day
- ARIANNA spans the impending energy gap
 - Ice studies in Nov' 06 astonishingly good, but not the only contender (SALSA, AURA, Auger, acoustic detection)
 - MRI proposal submitted Jan 2007 for 200 station Phase A

Ideas to measure $\sigma_{\!_{\rm V}}$ at UHE

- Kusenko and Weiler, PRL 88 (2002)161101
 - Use Hor. Air Sh and upward-going leptons
- Anchordoqui, et al., PRL 96 (2006)021101
 - Earth skimming to downward going v in buried detectors like AMANDA
- Anchordoqui, et al., hep-ph/0410136v2
 - Use RICE limits and assumed flux
- Hussain and McKay, hep-ph/0510083v2
 - Use RICE limits and assumed flux
- Barger, Huber and Marfatia, hep-ph/0606311
 - Use RICE limits and derived neutrino flux

ANITA probes with improved sensitivity at E>10¹⁹eV