Jet reshaping in heavy-ion collisions

Carlos A. Salgado Università di Roma ''La Sapienza''

ISMD, Berkeley, August 2007

<u>carlos.salgado@cern.ch</u> <u>http://csalgado.web.cern.ch</u>/

Jet studies in HIC

ISMD, Berkeley, August 2007

Jet studies in HIC

ISMD, Berkeley, August 2007

Hard probes in heavy-ion collisions

⇒ SPS $\sqrt{s} = 20$ GeV ($Q \sim 1$ GeV) → marginal access to HP ⇒ RHIC $\sqrt{s} = 200$ GeV ($Q \sim 10$ GeV) → access to HP ⇒ LHC $\sqrt{s} = 5500$ GeV ($Q \gtrsim 100$ GeV) → HP and QCD evolution

⇒ The extension of the medium modifies the long-distance terms
 ⇒ New evolution equations for f_A(x, Q²); D(z, Q²)
 ⇒ Kinematical access to evolution: large-Q², small-x

DGLAP evolution in vacuum

$$t = Q^2 \text{ plays the role of time}$$

Ordered gluon splitting given by DGLAP

$$\frac{\partial f(x,t)}{\partial \log t} = \int_{x}^{1} \frac{dz}{z} \frac{\alpha_{s}}{2\pi} \underbrace{P(z)f(x/z,t)}_{\text{splitting function}}$$

f(x,t) are the PDFs or the FF

ISMD, Berkeley, August 2007

What is the equivalent for the medium?

$$\frac{A}{20} \xrightarrow{-t_0} -t_1 \qquad \qquad -t_{n-1} -t_n \qquad \qquad -t_{n-1} -t_n \qquad \qquad -t_n \qquad \qquad -t_n -t_n \qquad -$$

First proposal: Quenching Weights [Baier, Dokshitzer, Mueller, Schiff 2001]
 Independent gluon emission

Poisson distribution for the medium-induced radiation

$$P_E(\epsilon) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^n \int d\omega_i \frac{dI^{\text{med}}(\omega_i)}{d\omega} \right] \delta\left(\epsilon - \sum \frac{\omega_i}{E}\right) \exp\left[-\int d\omega \frac{dI^{\text{med}}}{d\omega}\right]$$

$$p_0 = \exp\left[-\int d\omega \frac{dI^{\text{med}}}{d\omega}\right]$$

Probability of no splitting

ISMD, Berkeley, August 2007

Some drawbacks of the QW:

- Vacuum and medium treated separately
- Energy conservation
- Role of virtuality
- Angular structures not studied

Some drawbacks of the QW:

- Vacuum and medium treated separately
- Energy conservation
- Role of virtuality
- Angular structures not studied

Data is, however, very well described

ISMD, Berkeley, August 2007

Description of the suppression

[Gyulassy, Levai, Vitev 2002; Arleo 2002; Dainese, Loizides, Paic 2004; Wang, Wang 2005; Drees, Feng, Jia 2005; Turbide, Gale, Jeon, Moore 2005...]

Medium-induced gluon radiation

Gluon formation time

$$t_{\rm form} \sim \omega/k_\perp^2$$

Radiation suppressed for $t_{\text{form}} \ge L$

Transport coefficient

$$\hat{q} \simeq \frac{\langle k_{\perp}^2 \rangle}{\lambda} \propto n(\xi)$$

 \Rightarrow Two main predictions

Similar Energy loss
$$\Delta E \sim \alpha_s \hat{q} L^2$$

Similar Jet broadening $\langle k_t \rangle \sim \hat{q} L$

ISMD, Berkeley, August 2007

Vacuum: Sudakov prescription

 \Rightarrow The probability of no radiation between two scales

$$\Delta(t) \equiv \exp\left[-\int_{t_0}^t \frac{dt'}{t'} \int dz \frac{\alpha_s}{2\pi} P(z)\right]$$

 \Rightarrow The probability of one splitting

$$d\mathcal{P}(t,z) = \frac{dt}{t} dz \frac{\alpha_s}{2\pi} P(z) \Delta(t)$$

ightarrow Iterating, an equivalent to DGLAP is obtained (at LO in $lpha_s$)

$$f(x,t) = \Delta(t)f(x,t_0) + \int \frac{dt'}{t'} \frac{\Delta(t)}{\Delta(t')} \int \frac{dz}{z} \frac{\alpha_s}{2\pi} P(z)f(x/z,t')$$

Probabilistic interpretation well suited for MC event generators

ISMD, Berkeley, August 2007

Medium-modification of the evolution

Medium-modification of the evolution

- ⇒ Two main modifications w.r.t. vacuum
 - Modified radiation structure
 - \checkmark Enhanced number of splittings \rightarrow faster evolution
- ⇒ Previous related approaches
 ⇒ Medium-effects as higher-twist corrections to IA DIS find similar modification of the splitting function [Guo-Wang-Majumder]
 ⇒ Constant factor P(z) → (1 + f_{med})P(z) [Borghini, Wiedemann 2005]

Including the medium: all together

The Sudakov form factor contains now the vacuum and medium

$$\Delta^{\rm tot}(t) = \exp\left[-\int_{t_0}^t \frac{dt'}{t'} \int dz \frac{\alpha_s}{2\pi} \left[P(z) + \Delta P(z,t)\right]\right] = \Delta^{\rm vac}(t) \Delta^{\rm med}(t)$$

 \Rightarrow Ignoring virtuality, i.e. setting the limits to the kinematical ones

$$\Delta^{\mathrm{med}}(t) = p_0 \equiv \exp\left[-\int d\omega \, dk_t^2 \, \frac{dI^{\mathrm{med}}}{d\omega dk_t^2}\right]$$

and the QW formulation for the FF is recovered for $x = 1 - z \ll 1$

$$D(x,t) \simeq \Delta^{med}(t) D^{vac}(x,t) + \Delta^{med}(t) \int \frac{d\epsilon}{1-\epsilon} \sum_{n=1}^{\infty} \frac{1}{n!} \prod_{i=1}^{n} \int_{t_0}^{t} \frac{dt_i}{t_i} \int dz_i P^{med}(z_i)$$
$$\times \delta\left(\epsilon - \sum_{j=1}^{n} x_j\right) D^{vac}\left(\frac{x}{1-\epsilon},t\right),$$

[Armesto, Cunqueiro, Salgado, Xiang in preparation]

ISMD, Berkeley, August 2007

Results

⇒ Softening of the fragmentation functions - energy loss
 ⇒ Agreement with QW framework when Q² ≃ E²_{jet}
 ⇒ QW overestimates suppression when Q² ≪ E²_{jet}

[Armesto, Cunqueiro, Salgado, Xiang in preparation]

ISMD, Berkeley, August 2007

Results

[Armesto, Cunqueiro, Salgado, Xiang in preparation]

ISMD, Berkeley, August 2007

This approach provides a straightforward implementation in Monte Carlo codes

 Just change the vacuum splitting by the medium+vacuum one in the shower algorithm

ISMD, Berkeley, August 2007

This approach provides a straightforward implementation in Monte Carlo codes

 Just change the vacuum splitting by the medium+vacuum one in the shower algorithm

ISMD, Berkeley, August 2007

Results from an implementation in Pythia

Main medium-modifications in agreement with expectations

- Particle spectrum softens (energy loss)
- Larger emission angles (jet broadening)
- Larger multiplicity

[Armesto, Cunqueiro, Salgado in preparation]

ISMD, Berkeley, August 2007

Results from an implementation in Pythia

Main medium-modifications in agreement with expectations

- Particle spectrum softens (energy loss)
- Larger emission angles (jet broadening)
- 🔌 Larger multiplicity

[Armesto, Cunqueiro, Salgado in preparation]

ISMD, Berkeley, August 2007

<u>A particular case:</u>

Jet shapes dominated by the first splitting

ISMD, Berkeley, August 2007

Parton shower for opaque media

Non-trivial angular dependence for the medium-induced gluon radiation: Two peaks in the laboratory azimuthal angle

$$\Phi_{\rm max} = \pm \arccos \sqrt{\frac{8\pi}{E \, L \, \alpha_s \, C_R}}$$

ISMD, Berkeley, August 2007

A simple model to compare with data

 \Rightarrow Smearing in longitudinal (η) and transverse (Φ) variables

$$\frac{dP}{d\Delta\Phi dz} = \frac{1}{N} \int_{-\Delta\eta}^{\Delta\eta} d\eta \int d\Phi' \frac{d\mathcal{P}}{d\Phi' dz d\eta} e^{-\frac{(\Delta\Phi - \Phi')^2}{2\sigma^2}}$$

[Polosa and Salgado 2006]

If the radiation is dominated by the first splitting a two-peak structure can be accommodated in a perturbative approach.

ISMD, Berkeley, August 2007

The picture

⇒ The splitting probability in the medium presents two maxima in $\Delta \Phi$ for gluon energies $\omega \leq \hat{q}^{1/3} \sim 3$ GeV for $\hat{q} \sim 10$ GeV²/fm.

 ${}^{\bigstar}$ Using parton–hadron duality $p_t^{\rm assoc} \sim \omega$

Influence of kinematic constrains – STAR for concretenes

- $\Rightarrow 2.5 < p_t^{\text{trigg}} < 4 \text{ GeV} \text{ and } 1 < p_t^{\text{assoc}} < 2.5 \text{ GeV}$
 - \rightarrow Energy conservation restricts the number of splittings to 1 or 2.
 - Two peaks in the angular correlations
- $\Rightarrow 6 < p_t^{\text{trigg}} < 10 \text{GeVand } 1 < p_t^{\text{assoc}} < 2.5 \text{ GeV}$
 - More splittings possible
 - The dip is filled inclusive distribution does not have dip
- $\Rightarrow p_t^{assoc} > 6 \text{ GeV} \gg \hat{q}^{1/3} \sim 3 \text{ GeV}$

 \rightarrow the radiation is more collinear and the dip dissapears

Improving the description of the medium:

Interplay with hydrodynamics

ISMD, Berkeley, August 2007

Flowing medium

$$\frac{\partial f(U^2,t)}{\partial t} = -\int f(U^2,t)V((\vec{U}-\vec{U}')^2)d^2\vec{U}' + \int f(U'^2,t)V((\vec{U}'-\vec{U})^2)d^2\vec{U}' \,.$$

[BDMPS 1996]

 $k_t^2 \simeq \hat{q} \, L$

[Armesto, Salgado, Wiedemann 2004] [Majumder, Muller, Bass 2006]

ISMD, Berkeley, August 2007

The ridge

Transport coefficient depends on the emission angle
 Larger for emission parallel to the flow
 Smaller for emission perpendicular to the flow

 \Rightarrow Simple estimate, taking

 $\hat{q} = c \,\epsilon^{3/4} \propto p^{3/4}$

 $\Delta p/p = 1, 5, 18$ for $\eta = 0.5, 1, 1.5$

[ASW 2004]

 \Rightarrow More recent estimates

$$\hat{q} = \hat{q}_0 \,\gamma_f \left(1 - v_f \cos \theta\right)$$

[Baier, Mueller, Schiff 2007; Liu, Rajagopal, Wiedemann 2007]

[More in A. Majumder's talk]

Jet reshaping in heavy-ion collisions 21

ISMD, Berkeley, August 2007

Summary

 \Rightarrow A modified evolution of the jet shower is proposed **Medium-modified splitting function** $\tilde{P}(z,t) = P(z) + \Delta P(z,t)$ Shower particles are softer and larger angle Multiplicity enhances \Rightarrow The quenching weights prescription is recovered for $Q \simeq E_{\rm jet}$ Check of the validity of the usual approach \Rightarrow When the jet shape is dominated by one splitting non-trivial angular structures appear for opaque media Possible origin of the experimental two-peak structures More realistic analysis needed \Rightarrow Flow fields expected to distort the jet shapes Jet shapes trace flow fields in the medium