Open charm production at RHIC

Xin Dong

Lawrence Berkeley National Lab

- Introduction
- Open charm production at RHIC
 - Charm production cross section
 - Charm quark ΔE in medium
 - Charm quark v₂
- Summary and outlook

Many Thanks to:

H. Huang, H. Ritter, K. Schweda, E. Sichtermann, P. Sorensen, N. Xu, Z. Xu, Y. ZhangM. Djordjevic, L. Grandchamp, M. Gyulassy, J. Raufeisen, R. Vogt, X.-N. Wang

Heavy ion physics at RHIC

RHIC heavy ion program Search and measure the *QGP* – matter with partonic EoS

Probes:

jets, direct photon, leptons, heavy flavors, ... Measurements:

spectrum, flow (radial, elliptic ...), correlations, ...

X.Dong / LBNL

What we have learned at RHIC

Jet-quenching: high density medium created

- > Large v_2 and β_T : partonic collectivity
- NCQ-grouping: partonic collectivity and deconfinement

<u>A hot dense matter with partonic collectivity has been created</u> <u>at RHIC</u>

Experimentally, future goals are:

Looking for the evidence of early thermalization
 EoS

Chiral symmetry restoration

Why Charm? – an ideal probe for studying QGP

Heavy !

- Charm quarks created at early stage of HIC
 - \rightarrow total yields scaled by N_{bin}
- Sensitive to the partonic rescatterings
- Collectivity, flow
 - \rightarrow indication of light flavor

thermalization (to some degree)

X.Dong / LBNL

How to measure Charm?

Charm measurements at RHIC

 central arms --- electrons: |φ|<2*π/2,|η|<0.35 DC (tracker), Ring Image Cherenkov (RICH), EMCal
 forward/backward arms --- muons: 1.5<|η|<1.8 muon tracker, muon identifier

Advantages: -- low material budget, clean environ. -- central, forward/backward coverage

- D recon. from hadronic decay channels: TPC (+TOF)
- electrons, *muons*: TPC, TPC+TOF, TPC+EMC

Advantages: -- large acceptance |φ|<2π,|η|<1 -- reconstruction from hadronic channel

Heavy flavor in pQCD

Charm production in HIC at RHIC

Charm quark mostly produced from the initial fusion of partons (mostly gluons)

Z. Lin & M. Gyulassy, PRC 51 (1995) 2177

Charm quark cross section in heavy ion collisions should be scaled by the number of binary collisions

Nuclear shadowing effect?

Charm cross section from PHENIX

Charm cross section from STAR

Three independent measurementsThree independent detector systems1)Charm from hadronic channel2)Charm from muon at low p_{τ} (~0.2GeV/c)3)Charm from electrons

Charm yields are ~5x FONLL calculations N_{bin} scaling preserved from d+Au to central Au+Au collisions

Aug. 9, 2007 ISMD 2007, Berkeley

X.Dong / LBNL

Comparisons between PHENIX and STAR

Rapidity dependence

STAR *PRL 94 (2005) 062301* PHENIX *PRL 97 (2006) 252002* PHENIX *nucl-ex/0609032* d+Au D⁰+e measurement p+p central arm electron measurement p+p forward arm muon measurement

Charm cross section vs energy

Charmonium suppression/enhancement?

- (1) direct pQCD production
- (2) medium effect (chiral)
- (3) absorption (color screening)

Central AuAu collisions at RHIC $dN/dy(c\bar{c}) \sim 5-10$ $c + \bar{c} \rightarrow J/\psi + X$

L.Grandchamp et al NPA 790 (2002) 415

L. Grandchamp, private comm.

<u>Precise centrality dependence</u> <u>measurements on charm production</u> <u>cross section are important!</u>

Charm energy loss

Heavy quark loss less energy due to suppression of small angle gluon radiation

"Dead Cone" effect

Y. Dokshitzer & D. Kharzeev PLB 519(2001)199

$$dP = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{k_\perp^2 dk_\perp^2}{(k_\perp^2 + \omega^2 \theta_0^2)^2} = \frac{dP_0}{(1 + \theta_0^2 / \theta^2)^2}$$
$$\theta_0 \equiv \frac{M}{E} \theta \equiv \frac{k_\perp}{\omega}$$

M. Djordjevic, et. al. PRL 94(2005)112301
B.W. Zhang et. al. PRL 93(2004)072301
N. Armesto et. al. PRD 71(2005)054027
R. Rapp et. al. NPA 774 (2006) 685

Energy loss of heavy quarks and light quarks

--- Probe the medium property the nature of parton interaction !

Challenge to radiative energy loss

Radiative energy loss mechanisms can only account for part of strong
suppression of R_{AA} for electrons.Elastic collision energy loss becomes important at $\gamma\beta \sim 1$ Aug. 9, 2007ISMD 2007, BerkeleyX.Dong / LBNL

16

Challenge to radiative energy loss

Radiative energy loss mechanisms can only account for part of strong
suppression of R_{AA} for electrons.Elastic collision energy loss becomes important at $\gamma\beta \sim 1$ Aug. 9, 2007ISMD 2007, BerkeleyX.Dong / LBNL

Re-visit radiative energy loss in a dynamic medium

Previous radiative energy loss calculation is based on that the collisional energy loss is exactly 0 ---- "static" medium. → Need recalculation if the collisional energy loss is not negligible.

First try:

M. Djordjevic and U. Heinz, arXiv:0705.3439

Charm baryon contribution

 $D^0 \rightarrow e^+ + X$ B.R. (6.87±0.28)% $D^+ \rightarrow e^+ + X$ B.R. (17.2±1.9)% $\Lambda_c^+ \to e^+ + X$ B.R. (4.5±1.7)%

and baryons separately!

Charm elliptic flow

Non-photonic electron v₂

111111

BERKELEY LAD

v_2 and R_{AA}

S. Sakai (PHENIX), RHIC Users Mtg 06

R_{AA} ~ 1.0 @ peripheral collision but v₂ still non-zero
 charm quarks interact with *medium* not only in central but also in peripheral collisions
 Aug. 9, 2007 ISMD 2007, Berkeley
 X.Dong / LBNL

Bottom contribution

Non-photonic electrons:

- ≻charm semi-leptonic decay
- ≻bottom semi-leptonic decay

≻others...

M. Cacciari et al., PRL 95 (2005) 122001

Theoretically, the bottom contribution to the total single electron spectrum has a big uncertainty. The crossing point of e(B) and e(D) spectra can vary from <u>~3 GeV/c - ~10 GeV/c</u>

X.Dong / LBNL

Bottom contribution

Summary

Much more precise measurements on heavy flavor are called for !

.....

BERKELEY LAD

X.Dong / LBNL

Summary

- > Single electron approaches are placeholder.
- Identified open charm (beauty) measurements are definitely necessary.
- > The upgrade programs in PHENIX and STAR are essential!

Upgrade detectors at PHENIX

Upgrade detectors at STAR

Full Barrel MRPC - TOF

<u>Heavy Flavor Tracker</u>

Full open charm measurements

- direct D-meson V_0 reconstruction
- spectrum, v_2 (low \rightarrow high p_T), correlations ...

Back up

QCD in vacuum

Charm collective motion

Power-law and Blast Wave charm decay D^{0} + e fit in d+Au collisions.

 $D^0 + \mu + e$ fit in minbias Au+Au collisions.

 μ + e fit in central Au+Au collisions.

Expected to freeze out earlier

Collective velocity – charm flow?

-T > 140 MeV

 $<\beta_{\tau}><\phi$, Ω

Correlations between electrons and D, B

The correlation between the decayed electrons and heavy-flavor hadrons is weak.

