The RICH Detector At STAR

B. Lasiuk (YALE) for the STAR collaboration The STAR-RICH Collaboration (Yale - Bari - CERN)

•Accessible Physics

- •Device Characteristics
 - construction
 - components
- •Heavy Ion Environment
- •Particle Identification

STAR Detector

- STAR optimized for Au-Au at 200 GeV A
- Characterization of Global Observables
- PID by Several Detectors
- RHIC Provides Access to Hard Processes in Nuclear Environment - How to Access the "Hard Physics" at RHIC?

Accessible Physics at RHIC

- Hard Processes in Nuclear Environment
- Must Access High P_T Region
- Parton Energy Loss in Dense Matter
 - Effects of the Medium
- Species/Flavor Dependence of Observables

Design Goals and Constraints

- Considerations for High P_T PID in Heavy Ion Collisions
 - ALICE and STAR are Nearly Identical
 - High Multiplicity...
 - Low Rate
 - $p_T > 2 \text{ GeV/c}$
 - High Radiation-Flux Environment
 - Presence of Magnetic Field

• Requirements

- 2-Dimensional Read-out
 - Environment
- Surface Conversion/Emission
 - Large Range of Incident Track Angles

•At "High" P_T

- Small Rates
- Inclusive Measurements
- Single Arm Detector

Components

• Developed by CERN RD-26 in ALICE framework headed by F. Piuz, E. Nappi, G. Paic

• ALICE RICH Prototype Module (1 m²)

- Radiator
 - C₆F₁₄ Liquid
- Photo Converter
 - CsI
 - $\lambda < 210 \ (nm)$
- Ionization Detector
 - MWPC pad chamber
 - CH₄ Gas

Device Characteristics

- •160 x 85 cm² \Rightarrow 1 m² •Radial Distance of 2.4 m
- |y| < 0.2

•Extend PID beyond TPC TOF: 1<math>2

Pad Chamber

• 2-D Cathode Pad Readout

- 500 nm CsI Layer on Pads
 - 8.0 x 8.4 mm²
 - 15360k pads

• Dynamic Range

- Single Electron
- MIP detection
- Chamber Stability
- Limit Feedback Photons
- **CH₄** Chamber Gas
 - Quenching
 - High Photo-Electron Emission Efficiency

Electronics

- GASSIPLEX CMOS 1.5 µm technology
 - Charge Pre-amp, Shaper, and Track and Hold Stage
 - Pad Readout ONLY
 - 11 bit Dynamic Range \Rightarrow .17 fC/channel
- Event Rate allows 700 ns Integration
 - Multiplexed 16 Analog Channels MCM⇒
 - Maximum Read-out Rate => 100 kHz
 - STAR Trigger Rate => 1-2 Hz
 - Heat Generation
 - 6mW channel⁻¹ => ~ 100 W/16k channels
 - concern for liquid $dn/dT = 5x10^{-4} \text{ }^{\circ}\text{C}^{-1}$

ALICE prototype

Gas Requirements

- O₂ & H₂O hazardous to CsI
- Must Deliver Clean Anhydrous Gas
 - CH_4 Flow Rate of $\leq 30 l hr^{-1}$
 - Ar Purge/Buffer Flow at 60 l hr¹

Exposure Limits Test Allow Shipment24 hours18 hours10000 ppm O_2 18000 ppm O_2 40 ppm H_2O

January 14-20,2001

Determination of Cerenkov Angle

January 14-20,2001

Hough Transform

- The Hough Transform Method (HTM) represents an efficient implementation of a generalized *template matching* strategy for detecting complex patterns in binary images
 - look for local maxima in a *feature parameter* space

cluster coordinate
$$(x,y) \rightarrow ((x_p,y_p,\theta_p,\phi_p),\eta_c)$$
 photon Cerenkov
impact track parameter known

solution in one dimensional mapping space η_c

Pattern recognition with Hough Transform

B. Lasiuk Quark Matter 2001

Analysis and Towards PID

Chamber Alignment

- Track Extrapolation
 - $-\sigma_{drift} = 2.7 \text{ mm}$
 - $\sigma_{\text{bend}} = 3.1 \text{ mm}$
- Near Expected Resolution
 - 8.0 x 8.4 mm² pads
 - center of gravity method
 - 4 mm anode wire pitch
 - 2 mm anode-cathode spacing

Cluster Characteristics

Dynamic Range of Chamber

- Single Electron Detection
- Minimum Ionizing Particles
- Chamber Stability \Rightarrow

High Chamber Gain Introduces Photon Background From Avalanche:

FeedBack Photons

The STAR Environment

The Large Range of Track Incident Angle on Radiator Affects the Ring Shape and Character

- TPC Extrapolation Capabilities
 - in drift direction
 - close to resolution of chamber

Cerenkov "Ellipses"

- **Effect of:** ۲
 - **Track Incidence Angle**
 - **Proximity Focussing** ____

Ring Azimuth Angles

- **180°** "Constant Angle"
- **90°**
- **60°**

Characterization **Allows Uniform Treatment**

January 14-20,2001

Golden Event

- Illustrative Example
- Separation Possible
 - Signal/Background is Large
 - Proximity Focussing produces "Rings"
- Both Pion and Kaon Emerge
- Size of MIP and γ

Method For PID I

Track Quality Cuts

- Primary TPC Track
- Extrapolated Point Detected
- Small Residual
- Track-by-Track Observables
 - Number of Hits
 - Area on Pad Plane
 - Density of Hits in Fiducial
 - Evolution of Number of Hits
 - d distribution

Method For PID II

- **<u>NOT</u>** Track-by-Track
- "Statistical" Ring Photons
- Reduced Sensitivity to:
 - Absolute Ring Positions
 - Spread of Photons in Ring
- Non-Trivial background
 - Shape of photon Spectrum
 - Signal
 - BackGround
- Complementary Method

Accomplishments

- 8 year R&D project has been successful
 - Prototype RICH Chamber in operation at STAR
 - Performance as Expected
- Several Particle Identification Techniques
 - Consistent Results
 - Controlled Systematics
- Statistical Limitation at Present

People

- Y.Andres¹, A.Braem¹, M.Calderon², N.Colonna³, D. Cozza³, M.Davenport¹, L. Dell'Olio³, D. DiBari³, A. DiMauro¹, J.C.Dunlop², D.Elia³, E.Finch⁴, R.Fini³, D. Fraissard¹, J. Gans², B.Ghidini³, B. Goret¹, R.Gregory¹, J.W.Harris², M.Horsley², <u>G.J.Kunde²</u>, B.Lasiuk², Y. Lescenechal¹, R.D.Majka⁴, P.Martinengo¹, A.Morsch¹, <u>E.Nappi³</u>, G.Paic¹, F.Piuz¹, F.Posa³, J.Raynaud¹, S.Salur², J.Sandweiss⁴, J.C.Santiard¹, J.Satinover², E.Schyns¹, N.Smirnov², S.Stucchi³, G.Tomasicchio³, J. Van Beelen¹, T.D. Williams¹, Z. Xu⁴
- 1 CERN HMPID Group
- 2 Yale Relativistic Heavy Ion Group
- 3 Bari HMPID Group
- 4 Yale High Energy Group