The STAR Time Projection Chamber

Fabrice Retière (LBNL) for the STAR collaboration

Introduction

- TPC function
 - Large acceptance gas detector
 - $|\eta| < 1.8$
 - Full azimuthal coverage
 - Momentum reconstruction
 - Tracking with design hit position resolution $\sim 500 \ \mu m$
 - Pid using dE/dx
 - Design resolution : 7%

- TPC design
- Tuning the TPC
 - Position reconstruction
 - Drift velocity
 - Drift distortion
 - dE/dx
 - Understanding ionization
 - Gain calibration

STAR detector

- 0.5 Tesla magnet
 - 0.25 for year 1
- Trigger
 - CTB
 - ZDC
 - Level 3
- Year 1 detectors
 - <u>TPC</u>
 - RICH
 - 1 SVT ladder

TPC gas volume

- Gas : P10 (Ar-CH4 90%-10%) @ 1 atm
- Drift voltage : -31 kV Sectors Outer Field Cage & Support Tube Inner Field Cage Z = 0High Voltage Membrane 4200 mm Sector Support-Wheel

Pad readout

Electronic readout

- FEE, custom design IC : SAS + SCA (512 time bins)
 - Readout 140K channels, i.e. 70M pixels
- Readout board

TPC at work First RHIC events

Good for physics without calibration

TPC at work dE/dx measurement before calibration

Tuning the TPC Processes to control

Electron drift Drift velocity under control

• Fine adjustment from tracking matching both side of the TPC

Electron drift B field map correction

Electron drift Inner/outer sector boundary

Inner

sector

Data

• No wires at the boundary between inner and outer sector

Electron drift distortions under control

Gain uniformity Gas gain

1.6

- Gain variation
 - Over TPC sectors
 - With time
 - Pressure
 - Temperature
- Correction using average 1.4 dEdx
 - Require a lot of events to cancel out fluctuations
 - Gain monitor chamber being built
 - Pulser for electronic gain calibration

Eugene Yamamoto (UCLA)

Gain uniformity Electronic gain

Ionization and gain uniformity dEdx resolution

Yuri Fisyak (BNL)

Conclusion particle identification

The TPC is an excellent tool for physics

- Approaching design performance
 - Good particle separation using dE/dx
 - . 7.5%
 - $_{\infty}~\pi\text{-proton separation}$: 1.3 GeV/c
 - Position resolution
 - 500 μm
 - 2-Track resolution
 - 2.5 cm
 - Momentum resolution
 - · 2%

- Future challenges
 - Achieve turn-key operation
 - Handle increased luminosity
- Lots of physics from the year 1 data
 - Collective flow
 - Identified particle spectra
 - Particle correlations
 - Event by event physics
 - Strangeness

. . .

20