Pion Interferometry Relative to the Reaction Plane

Randall C. Wells, Department of Physics, The Ohio State University, Columbus, OH 43210-1106 for the STAR HBT Physics Working Group and the STAR Collaboration

ABSTRACT

Measurements of particle correlations in noncentral heavy ion collision¹ provide unique information of the geometry of the emission region. In combination with measurements of spatial tilt² the structure of the emission source can be connected with the physics of anisotropic flow.³ We will present preliminary results of pion interferometry relative to the reaction plane in Au + Au collisions at RHIC.

Motivation:

HBT gives a geometric view of the emission region. An analysis done with respect to the reaction plane can probe the spatiotemporal geometry and anisotropic flow.

Novel emission regions may be found in non-central events at RHIC

Model calculation shows possible "nutcracker" scenarios for the emission region in non-central collisions at RHIC.

This analysis was done with Pratt-Bertsch decomposition(R_{long}, R_{side}, and R_{out}). R_{long} is defined as the beam direction. Rout is the direction of the pair transverse momentum. R_{side} is the direction perpendicular to both Rlong and Rout.

As seen in this picture showing the Rout and R_{side} decomposition of the momenta, R_{side} contains geometric size information and Rout contains information on

both the geometric size and the emission timescale. In this view, R_{long} is out of the poster.

Shown above are results from the AGS which show an almond shape overlap region as well as a tilt relative to the beam direction.

To correct for detector acceptance, events are binned according to their respective reaction planes and only events with similar reaction planes are mixed.

At the left is the second order reaction plane distribution with and without a phi acceptance correction. The correction is used to flatten the reaction plane distribution for a given collection of events⁴. STAR measures the second order reaction plane to within 25°.

Projections of Pratt-Bertsch parameterization of 3D pion correlations for pair emission angle relative to RP of 450 +/-22.5°. Black triangle are data and red circles are fit points.

Data is fit using the full 6 dimensional radii:

Shown above is the azimuthal dependence of the HBT radii.

50 100 150 200 250 300 3

4 6 60 100 150 200 250 300 3

Future

•Present analysis was done with most of the August run. Including the September data with increase statistics by at least 20%

•Include Reaction Plane resolution effects

•Explore phase space

6 50 100 150 200 250 300 3

REFERENCES

- 1. M.A. Lisa and the E895 Collaboration Phys. Lett. B496 1 (2000).
- M.A. Lisa, U. Heinz, and U. Wiedemann Phys. Rev. Lett. 85, 940 (2000).
- S.A. Voloshin, W.E. Cleland, Phys Rev C. 52, 2694 (1995).
- C. Adler, et al, (STAR Collaboration) Phys. Rev. Lett. 86 402 (2001).

