Medium modification of the jet properties

Carlos A. Salgado

CERN, TH-Division

- \Rightarrow Motivation. \longrightarrow Medium properties.
- \Rightarrow Medium-induced gluon radiation.
 - Heavy quarks
- \Rightarrow Jet shapes in nuclear collisions.

Jet quenching (inclusive particle)

Jet quenching (inclusive particle)

Jet quenching (inclusive particle)

Several groups also describe these data (Gyulassy, Levai, Vitev, Wang, ...)

- \Rightarrow Smallest values of p_t are in the limit of applicability of the calculations.
- \Rightarrow Slope and magnitude of the effect are ok.

See poster by Heli Honkanen.

 \Rightarrow A quark or gluon (traveling in vacuum) with virtuality Q^2 will radiate gluons to become on-shell: DGLAP-like evolution.

- \Rightarrow A quark or gluon (traveling in vacuum) with virtuality Q^2 will radiate gluons to become on-shell: DGLAP-like evolution.
- Gluon radiation modified when the particle traverses a medium: medium-induced gluon radiation.

Probe to study medium properties.

- \Rightarrow A quark or gluon (traveling in vacuum) with virtuality Q^2 will radiate gluons to become on-shell: DGLAP-like evolution.
- Gluon radiation modified when the particle traverses a medium: medium-induced gluon radiation.

Probe to study medium properties.

 \Rightarrow In the same framework that describes inclusive particle suppression:

- 🄌 Heavy quarks.
- \rightarrow Jet properties \rightarrow access to dynamics.

Medium-induced gluon radiation.

For media of finite length

Medium-induced gluon radiation.

Coherence effects are important in high energy multiple scattering processes. For a gluon emitted with energy ω and k_{\perp} ,

$$\varphi = \left\langle \frac{k_{\perp}^2}{2\omega} \, \Delta z \right\rangle \Longrightarrow l_{coh} \sim \frac{\omega}{k_{\perp}^2}$$

Medium \longrightarrow transport coefficient $\hat{q} \simeq \frac{\mu^2}{\lambda}$, transverse momentum μ^2 per mean free path λ . So,

$$k_{\perp}^2 \sim \frac{l_{coh}}{\lambda} \mu^2 \implies k_{\perp}^2 \sim \hat{q}L \quad \text{(for } l_{coh} = L\text{)}$$

Let us define $\kappa^2 \equiv \frac{k_\perp^2}{\hat{q}L} , \ \omega_c = \frac{1}{2}\hat{q}L^2$

So, the phase for $\Delta z = L \longrightarrow \varphi \sim \kappa^2 \frac{\omega_c}{\omega}$

gluon emitted when $\varphi \gtrsim 1 \iff$ radiation suppressed for $\kappa^2 \lesssim \omega/\omega_c$ In cold nuclear matter: $Q_{sat}^2 = \hat{q}L \implies \kappa^2 = \frac{k_\perp^2}{Q_{sat}^2}$

Gluon energy distributions for quark jets

$$\kappa^{2} = \frac{k_{\perp}^{2}}{\hat{q}L}, \ \omega_{c} = \frac{1}{2}\hat{q}L^{2}$$

Plateau at small $\kappa \longleftrightarrow$ coherence gluons \Longrightarrow factor N_c/C_F larger

$$\omega \frac{dI}{d\omega} = \int_0^\omega dk_\perp \omega \frac{dI}{d\omega dk_\perp}$$

kinematical limit $k_{\perp} \leq \omega \implies \omega_c L$ finite

Infrared safe.

 \Rightarrow In the vacuum, small-angle radiation suppressed \longrightarrow dead cone effect

$$\frac{1}{k_{\perp}^2} \longrightarrow \frac{k_{\perp}^2}{\left(k_{\perp}^2 + \frac{\omega}{E}m^2\right)^2}$$

Dokshitzer-Kharzeev PLB519 (2001) 199 same factor for medium-induced radiation taking

$$k_{\perp}^2 \sim \sqrt{\hat{q}\omega}$$

 \Rightarrow Recent developments (2003):

- Djordjevic and Gyulassy, PLB560, 37; PRC68, 034914; nucl-th/0310076
 - Zhang, Wang and Wang, nucl-th/0309040
 - Armesto, Salgado and Wiedemann, hep-ph/0312106

Heavy Quarks

The dead cone is filled!

Smaller suppression than for light quarks, but not negligible.

Jet shapes

With the ω and k_{\perp} -differential spectrum it is, in principle, possible to compute the medium-effects on jet observables.

Jet shapes

 $\rho(R), \text{ fraction of the jet energy}$ inside a cone $R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$ $\rho_{\text{vac}}(R) = \frac{1}{N_{\text{jets}}} \sum_{\text{jets}} \frac{E_t(R)}{E_t(R=1)}$ $\rho_{\text{med}} = \rho_{\text{vac}} - \frac{\Delta E_t(R)}{E_t(R=1)}$ $+ \frac{\Delta E}{E_t} (1 - \rho_{\text{vac}}(R))$

Small modification \rightarrow can jet energy be determined experimentally above background?? Scaling with number of collisions for large cone angle.

Small sensitivity to IR cuts!

(Salgado, Wiedemann hep-ph/0310079)

Gluon multiplicity inside the jet.

The characteristic angular distribution of the medium—induced gluon radiation could be better observed in the quantity

$$\frac{dN^{\rm jet}}{dk_{\perp}} = \int_{k_{\perp}/sin\theta_c}^E d\omega \frac{dI}{d\omega dk_{\perp}}$$

For the vacuum we simply use

$$\frac{dI_{\rm vac}}{d\omega dk_{\perp}} \sim \frac{1}{\omega} \frac{1}{k_{\perp}}$$

Needs a more quantitative analysis.

But, effect based mainly on kinematics!

News from RHIC (from Mike Miller's Wednesday talk)

STAR preliminary

STAR preliminary

 \Rightarrow In qualitative agreement with PHENIX results

STAR preliminary

In qualitative agreement with PHENIX results
Also in qualitative agreement with theoretical expectations

STAR preliminary

 \Rightarrow In qualitative agreement with PHENIX results

- \Rightarrow Also in qualitative agreement with theoretical expectations
- However, not directly comparable with our results in previous slide: thermalization?

Conclusion

- \Rightarrow RHIC high- p_t results strongly point to a final state effect in central AuAu. In agreement with jet-quenching interpretation.
- \Rightarrow Medium–induced gluon radiation computed
 - \rightarrow ω and k_t -differential: Radiative energy-loss $\iff k_t$ -broadening.
 - \rightarrow k_t -integrated spectrum: Small IR-sensitivity.
- \Rightarrow Jet shapes \rightarrow Measure jets above background?
 - Small effect in the azimuthal redistribution of jet energy.
 - $\rightarrow k_t$ -differential spectrum inside the jets could be a clean observable.

Conclusion

- \Rightarrow RHIC high- p_t results strongly point to a final state effect in central AuAu. In agreement with jet-quenching interpretation.
- \Rightarrow Medium–induced gluon radiation computed
 - \rightarrow ω and k_t -differential: Radiative energy-loss $\iff k_t$ -broadening.
 - \rightarrow k_t -integrated spectrum: Small IR-sensitivity.
- \Rightarrow Jet shapes \rightarrow Measure jets above background?
 - Small effect in the azimuthal redistribution of jet energy.
 - $\rightarrow k_t$ -differential spectrum inside the jets could be a clean observable.
 - First results at this conference!

Conclusion

- \Rightarrow RHIC high- p_t results strongly point to a final state effect in central AuAu. In agreement with jet-quenching interpretation.
- \Rightarrow Medium–induced gluon radiation computed
 - \rightarrow ω and k_t -differential: Radiative energy-loss $\iff k_t$ -broadening.
 - \rightarrow k_t -integrated spectrum: Small IR-sensitivity.
- \Rightarrow Jet shapes \rightarrow Measure jets above background?
 - Small effect in the azimuthal redistribution of jet energy.
 - \rightarrow k_t -differential spectrum inside the jets could be a clean observable.
 - First results at this conference!
- \Rightarrow Heavy quarks:
 - Dead cone is filled
 - Smaller suppression than light quarks, but not negligible.