PH ENIX measurement of jet properties and their modification in heavy-ion collisions

Jan Rak
for the PHENIX collaboration

Partonic degree of freedom in HI

Highlights from RHIC AuAu program:

- high- p_{T} particle yield suppression - jet quenching
- disappearance of the back-to-back jet in central collisions
- exceedingly large azimuthal anisotropy v_{2}

Detailed analysis of parton/jet properties like:

- shape of the fragmentation $D(z)$ and parton distribution function $f_{q}\left(p_{T q}\right)$
- parton transverse momentum $\left\langle\mathrm{k}_{\mathrm{T}}{ }^{2}\right\rangle$
and their modification is vital for understanding of the mechanism of parton interaction with QCD medium formed at RHIC

Hard scattering

Hard scattering in longitudinal plane

Generally, momentum fraction $\mathbf{x}_{\mathbf{1}} \neq \mathbf{x}_{\mathbf{2}}$.
(Not in PHENIX $-0.35<\eta<0.35$)

Hard scattering

Hard scattering in transverse plane

Point-like partons \Rightarrow elastic scattering

$$
\vec{p}_{T, j e t 1}+\vec{p}_{T, j e t 2}=\overrightarrow{0}
$$

Hard scattering

Hard scattering in transverse plane

Point-like partons \Rightarrow elastic scattering

$$
\vec{p}_{T, \text { jet } 1}+\vec{p}_{T, j e t 2}=\overrightarrow{0}
$$

Partons have intrinsic transverse momentum $\boldsymbol{k}_{T} \vec{p}_{T, \text { jet } 1}+\vec{p}_{T, \text { jet } 2}=\vec{k}_{T, 1}+\vec{k}_{T, 2}$

PH ENIX

Jet Fragmentation (width of the jet cone)

Partons have to materialize
(fragment) in colorless world

$$
\vec{j}_{T}=\text { jet fragmentation }
$$

transverse momentum

j_{T} and k_{T} are 2 D vectors. We measure the mean value of its projection into the transverse plane $\langle | \mathrm{j}_{\mathrm{Ty}}| \rangle$ and $\langle | \mathrm{k}_{\mathrm{Ty}}| \rangle$.

$$
\langle | \mathrm{k}_{\mathrm{Ty}}| \rangle=\sqrt{\frac{2}{\pi}} \sqrt{\left\langle\mathrm{k}_{\mathrm{T}}^{2}\right\rangle}
$$

$\langle | \mathrm{j}_{\mathrm{Ty}}| \rangle$ is an important jet parameter. It's constant value independent on fragment's p_{T} is characteristic of jet fragmentation (j_{T}-scaling).
$\left\langle\mid \mathrm{k}_{\mathrm{Ty}}\right\rangle$ (intrinsic + NLO radiative corrections) carries the information on the parton interaction with QCD medium.

$$
\frac{\left\langle k_{\perp}^{2}\right\rangle_{\mathrm{AA}}=\left\langle k_{\perp}^{2}\right\rangle_{\mathrm{vac}}+\left\langle k_{\perp}^{2}\right\rangle_{\mathrm{IS} \mathrm{nucl}}+\left\langle k_{\perp}^{2}\right\rangle_{\mathrm{FS} \mathrm{nucl}}}{\mathrm{p}+\mathrm{p}} \underset{\mathrm{p}+\mathrm{A}}{\mathrm{~A}+\mathrm{A}}
$$

PH ENIX Fragmentation Function (distribution of parton momentum among fragments)

In Principle

$$
\vec{p}_{\text {parton }}=\sum_{i} \vec{p}_{i} \quad\left|\vec{p}_{\text {parton }}\right|=\sum_{i}\left|\vec{p}_{i}\right| \cos \left(\vartheta_{\mathrm{i}}\right)
$$

$$
z_{i}=\frac{\left|\vec{p}_{i}\right| \cos \left(\vartheta_{\mathrm{i}}\right)}{\left|\vec{p}_{\text {noxton }}\right|} \quad \sum_{i} z_{i}=1 \quad \text { Fragmentation function } \quad D(z) \propto e^{-z /\langle z\rangle}
$$

$$
\begin{aligned}
& \text { In Practice parton momenta are not known } \\
& x_{E}=-\frac{\vec{p}_{T} \cdot \vec{p}_{\text {Ttrigg }}}{\left|\vec{p}_{\text {Ttrigg }}\right|^{2}} \\
& x_{E} Z_{\text {trigg }}=\frac{p_{T} \cos (\Delta \varphi)}{p}=z \quad \Rightarrow \text { Simple relation } \\
& \langle Z\rangle=\left\langle x_{E}\right\rangle\left\langle z_{\text {trigg }}\right\rangle
\end{aligned}
$$

PH ENIX

x_{E} in pp collisions

1/30/2004

CCOR (ISR) $\sqrt{s}=63 \mathrm{GeV}$
see A.L.S. Angelis, Nucl Phys B209 (1982)

$$
1 /\left\langle\mathbf{x}_{\mathrm{E}}\right\rangle \approx-5.3
$$

PH ENIX

$\langle z\rangle$ extracted from pp data

We measured x_{E} and

$$
\langle z\rangle=\left\langle x_{E}\right\rangle\left\langle z_{\text {trigg }}\right\rangle
$$

$$
\left\langle z_{\text {trigg }}\right\rangle \propto \int_{x_{\text {Trigg }}}^{1} z\left(e^{-z /\langle z\rangle}\right) f_{q}\left(p_{T \text { trigg }} / z\right) \cdot z^{-2} d z
$$

FFn $D(z)$

PH ENIX

$\langle z\rangle$ extracted from pp data

We measured x_{E} and

$$
\langle z\rangle=\left\langle x_{E}\right\rangle\left\langle z_{\text {trigg }}\right\rangle
$$

final state parton distrib. extracted from PHENIX $\mathrm{p}+\mathrm{p} \rightarrow \pi^{0}+\mathrm{X}$

PH ENIX

$\langle z\rangle$ extracted from pp data

We measured x_{E} and

$$
\mathrm{x}_{\text {Ttrigg }}=2 \cdot \mathrm{p}_{\text {Ttrigg }} / V_{\mathrm{s}}
$$

$$
\langle z\rangle=\left\langle x_{E}\right\rangle\left\langle z_{\text {trigg }}\right\rangle \quad\left\langle z_{\text {trigg }}\right\rangle \propto \int_{x_{\text {Trrigg }}}^{1} z \cdot e^{-z /\langle z\rangle} f_{q}\left(p_{T} / z\right) \cdot z^{-2} d z
$$

Only one unknown variable $\langle\mathrm{z}\rangle \Rightarrow$ iterative solution

Slope of the fragmentation function in $\mathrm{p}+\mathrm{p}$ collisions at $\sqrt{ } \mathrm{s}=200 \mathrm{GeV}$

$$
\frac{1}{\langle z\rangle}=6.16 \pm 0.32
$$

PH ENIX

pp and dAu correlation functions

$\sigma_{\mathrm{N}}, \sigma_{\mathrm{A}},\langle | \mathrm{j}_{\mathrm{Ty}}| \rangle,\langle | \mathrm{k}_{\mathrm{Ty}}| \rangle$ relations

Knowing σ_{N} and σ_{A} it is straightforward to extract $\langle | \mathrm{j}_{\mathrm{Ty}}| \rangle$ and $\left\langle\mathrm{z}_{\text {trigg }}\right\rangle\langle | \mathrm{k}_{\mathrm{Ty}}| \rangle$ In the high- p_{T} limit $\left(\mathrm{p}_{\mathrm{T}} \gg\langle | \mathrm{j}_{\mathrm{Ty}}| \rangle\right.$ and $\left.\mathrm{p}_{\mathrm{T}} \gg\langle | \mathrm{k}_{\mathrm{Ty}}| \rangle\right)$

$$
\langle | j_{\perp y}| \rangle=\left\langle p_{\perp}\right\rangle \sin \frac{\sigma_{N}}{\sqrt{\pi}} \quad\langle | k_{T y}| \rangle \approx\left\langle p_{T}\right\rangle \sqrt{\sigma_{A}^{2}-\sigma_{N}^{2}}
$$

However, inspired by Feynman, Field, Fox and Tannenbaum (see Phys. Lett. 97B (1980) 163) we derived more accurate equation

$$
\left\langle z_{\text {trigg }}\right\rangle\langle | k_{T y}| \rangle=\frac{\left\langle p_{T}\right\rangle}{\sqrt{2} x_{h}} \sqrt{\sin ^{2} \sqrt{\frac{2}{\pi}} \sigma_{A}-\left(1+x^{2}{ }_{h}\right) \sin ^{2} \frac{\sigma_{N}}{\sqrt{\pi}}}
$$

$$
\mathrm{x}_{\mathrm{h}}=\mathrm{p}_{\mathrm{T}, \text { assoc }} / \mathrm{p}_{\mathrm{T}, \text { trigg }}
$$

PH ENIX

 $\sigma_{\mathrm{N}}, \sigma_{\mathrm{A}} \rightarrow\langle | \mathrm{j}_{\mathrm{Ty}}| \rangle,\langle | \mathrm{k}_{\mathrm{Ty}}| \rangle$ in pp data

$$
\left\langle k_{\perp}^{2}\right\rangle_{\mathrm{pp}}=\left\langle k_{\perp}^{2}\right\rangle_{\mathrm{vac}}
$$

PHENIX preliminary $\langle | \mathrm{j}_{\mathrm{Ty}}| \rangle=359 \pm 11 \mathrm{MeV} / \mathrm{c}$ $\langle | \mathrm{k}_{\mathrm{Ty}}| \rangle=964 \pm 49 \mathrm{MeV} / \mathrm{c}$

Both $\langle | \mathrm{j}_{\mathrm{Ty}}| \rangle$ and $\langle | \mathrm{k}_{\mathrm{Ty}}| \rangle$ in very good agreement with previous measurements: PLB97 (1980)163
PRD 59 (1999) 074007

From pp to dAu

$$
\left\langle k_{\perp}^{2}\right\rangle_{\mathrm{dAu}}=\left\langle k_{\perp}^{2}\right\rangle_{\mathrm{vac}}+\left\langle k_{\perp}^{2}\right\rangle_{\mathrm{IS} \text { nucl }}
$$

$\langle | \mathrm{k}_{\mathrm{Ty}}| \rangle$ carries the information on the parton interaction with cold nuclear matter. $\langle | \mathrm{j}_{\mathrm{Ty}}| \rangle$ should be the same as in pp - systematic cross check

$\left.\left\langle\mathrm{k}_{\mathrm{Ty}}\right\rangle\right\rangle$ from pp and dAu

$\langle | \mathrm{k}_{\mathrm{Ty}}| \rangle$ from pp and dAu

$$
\left\langle\Delta \mathbf{k}_{T}^{2}\right\rangle_{I S}=\mu^{2} / \lambda_{e f f}\langle L\rangle_{I S} \quad \text { I.Vitev nucl-th/0306039 }
$$

PH ENIX

AuAu $\langle | \mathrm{j}_{\mathrm{Ty}}| \rangle$ and $\langle\mathrm{z}\rangle\langle | \mathrm{k}_{\mathrm{Ty}}| \rangle$ from CF

$$
\left\langle k_{\perp}^{2}\right\rangle_{\mathrm{AA}}=\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle_{\mathrm{Vac}}+\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle_{\mathrm{IS} \text { nucl }}+\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle_{\mathrm{FS} \text { nucl }}
$$

AuAu $\langle | \mathrm{j}_{\mathrm{Ty}}| \rangle$ and $\langle\mathrm{z}\rangle\langle | \mathrm{k}_{\mathrm{Ty}}| \rangle$ from CF

$$
\left\langle k_{\perp}^{2}\right\rangle_{\mathrm{AA}}=\left\langle k_{\perp}^{2}\right\rangle_{\mathrm{vac}}+\left\langle{k_{\perp}^{2}}^{2}\right\rangle_{\mathrm{IS} \mathrm{nucl}}+\left\langle k_{\perp}^{2}\right\rangle_{\mathrm{FS} \text { nucl }}
$$

AuAu $\langle | \mathrm{j}_{\mathrm{Ty}}| \rangle$ and $\langle\mathrm{z}\rangle\langle | \mathrm{k}_{\mathrm{Ty}}| \rangle$ from CF

$$
\left\langle k_{\perp}{ }^{2}\right\rangle_{\mathrm{AA}}=\left\langle k_{\perp}{ }^{2}\right\rangle_{\mathrm{vac}}+\left\langle k_{\perp}{ }^{2}\right\rangle_{\mathrm{IS} \text { nucl }}+\left\langle k_{\perp}{ }^{2}\right\rangle_{\mathrm{FS} \text { nuc }}
$$

There seems to be significant broadening of the away-side correlation peak which persists also at somewhat higher p_{T} range.

PH ENIX

AuAu yield

AuAu associated yields

$$
\left(2.5<\mathrm{p}_{\text {Ttrigg }}<4.0\right) \otimes\left(1.0<\mathrm{p}_{\text {Tassoc }}<2.5\right) \mathrm{GeV} / \mathrm{c}
$$

PH ENIX

AuAu associated yields

$\left(2.5<\mathrm{p}_{\text {Triigs }}<4.0\right) \otimes\left(1.0<\mathrm{p}_{\text {Tassoc }}<2.5\right) \mathrm{GeV} / \mathrm{c}$

AuAu associated yields

$\left(2.5<\mathrm{p}_{\text {Trigg }}<4.0\right) \otimes\left(1.0<\mathrm{p}_{\text {Tassoc }}<2.5\right) \mathrm{GeV} / \mathrm{c}$

Note p_{T} is rather low; associated particle yields increase with centrality

Summary and conclusions

Jet production and fragmentation in pp, dAu and AuAu collisions:

- the slope of the fragmentation function in pp
- $\sigma_{\mathrm{N}}, \sigma_{\mathrm{A}},\langle | \mathrm{j}_{\mathrm{Ty}}| \rangle$ and $\langle | \mathrm{k}_{\mathrm{Ty}}| \rangle$ in $\mathrm{pp}, \mathrm{dAu}, \mathrm{AuAu}$
- Variation of the conditional yield of back-to-back particles with $\mathrm{N}_{\text {part }}$ in AuAu We found:
- Good agreement of the jet properties in pp collisions with other experiments
- $\mathrm{dAu}_{\mathrm{T}}$ and k_{T} consistent with pp
- In AuAu significant k_{T} - broadening with centrality
- Yield of away side associated particles shows rising trend with $\mathrm{N}_{\text {part }}$

Next step:

- map out this trend to explore whether this is a hint of jet-quenching balance
- Explore the AuAu fragmentation function

PH ENIX

Backup slides

PH ENIX Method - azimuthal correlation function

Now we know the $\langle\mathrm{z}\rangle$ - let us measure σ_{N} and $\sigma_{\mathrm{N}} \cdot$
Two particle azimuthal correlation function $C_{i \mathrm{ij}}(\Delta \phi)=n o r m \cdot \frac{\mathrm{dN}^{\text {real }}{ }_{\mathrm{ij}}}{\mathrm{d} \Delta \phi_{\mathrm{ij}}} / \frac{\mathrm{dN}^{\text {mixed }_{\mathrm{ij}}}}{\mathrm{d} \Delta \phi_{\mathrm{ij}}}$

Unavoidable source of two particle correlations in HI - elliptic flow

"flow" pairs :

$$
\left[1+2 v_{2}^{2} \cos (2 \Delta \varphi)\right]
$$

Intra-jet pairs angular width :

$$
\sigma_{\mathrm{N}} \rightarrow\langle | j_{\mathrm{Ty}}| \rangle
$$

Inter-jet pairs angular width :

$$
\sigma_{\mathrm{A}} \rightarrow\langle | \mathrm{j}_{\mathrm{Ty}}| \rangle \oplus\langle | \mathrm{k}_{\mathrm{Ty}}| \rangle
$$

PH ENIX

Comparison to outside world

PHENIX preliminary

Add the legend - experiment names
Larger markers and legends

yeilds

yeilds

yeilds

PH ENIX

CF's

