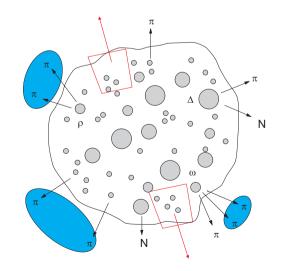
Production of resonances in a thermal model: invariant-mass spectra and balance functions

W. Broniowski¹, W. Florkowski^{1,2}

¹ The Henryk Niewodniczański Institute of Nuclear Physics, Kraków
² Institute of Physics, Świętokrzyska Academy, Kielce

Quark Matter 2004, Oakland



Thermal model

Koppe (1948), Fermi (1950), Landau, Hagedorn, Rafelski, Bjorken, Gorenstein, Gaździcki, Heinz, Braun-Munzinger, Stachel, Redlich, Magestro, Csörgő, Becattini, Cleymans, Letessier,...

our variant

WB + WF, PRL 87 (2001) 272302; PRC 65 (2002) 064905 (p_{\perp} spectra of hadrons) WB + WF + Brigitte Hiller, PRC 68 (2003) 034911 (pion invariant-mass distributions) Piotr Bożek + WB + WF, nucl-th/0310062 (pion balance functions)

single freeze-out model

- 1. $T_{\text{chem}} = T_{\text{kin}} \equiv T$
- **2.** Complete treatment of resonances
- **3.** Special choice of the freeze-out hypersurface, $au=\sqrt{t^2-x^2-y^2-z^2}= ext{const}$
- 4. Only 4 parameters: $T_{,\mu_B}$ (fixed by the ratios of the particle abundances), invariant time at freeze-out τ (controls the overall normalization), transverse size ρ_{\max} $(\rho_{\max}/\tau \text{ controls the slopes of the } p_{\perp} \text{ spectra})$
- **5.** Hubble-like flow, $u^{\mu} = \frac{x^{\mu}}{\tau} = \frac{t}{\tau}(1, \frac{x}{t}, \frac{y}{t}, \frac{z}{t})$

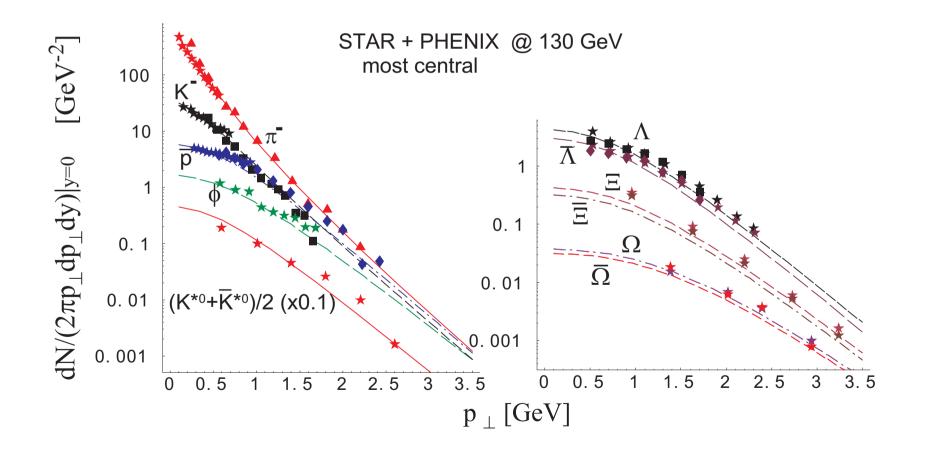
not unique! - see poster by Torrieri

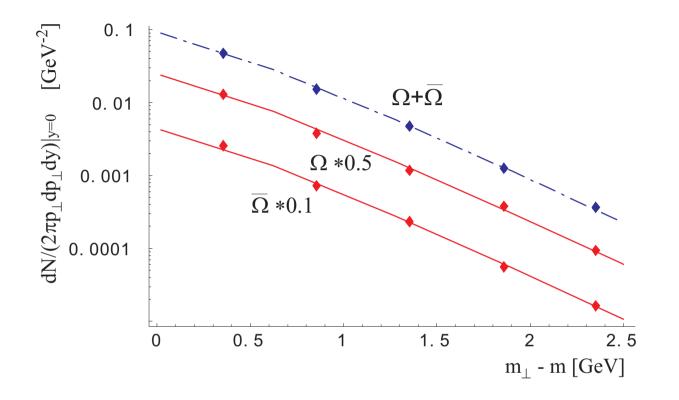
2 thermal parameters fitted from particle ratios

$$T \text{ [MeV]} = 165 \pm 7, \ \mu_B \text{ [MeV]} = 41 \pm 5, \quad @ 130 \text{ GeV}$$

 $T \text{ [MeV]} = 166 \pm 5, \ \mu_B \text{ [MeV]} = 29 \pm 4, \quad @ 200 \text{ GeV}$

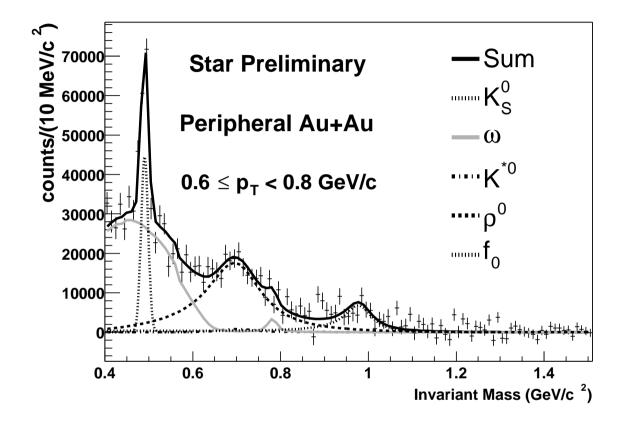
2 geometric parameters fitted from the spectra of π^{\pm}, K^{\pm}, p , and \bar{p}





besides particle ratios and transverse-momentum spectra we may try to calculate further observables, e.g., invariant-mass distributions, charge correlations, ...

$\pi^+\pi^-$ pairs from STAR – P. Fachini



Can we explain such resonance structure in the thermal model?

More importantly, can we explain the shift of the rho-meson peak?

recent papers by Shuryak and Brown, Kolb and Prakash, and Rapp indicate that the shift is a real dynamic effect

The phase-shift formula for the density of resonances

Beth,Uhlenbeck (1937); Dashen, Ma, Bernstein, Rajaraman; **Weinhold, Friman, Nörenberg**; WB+WF+BH, PRC 68 (2003) 034911; Pratt, Bauer, nucl-th/0308087

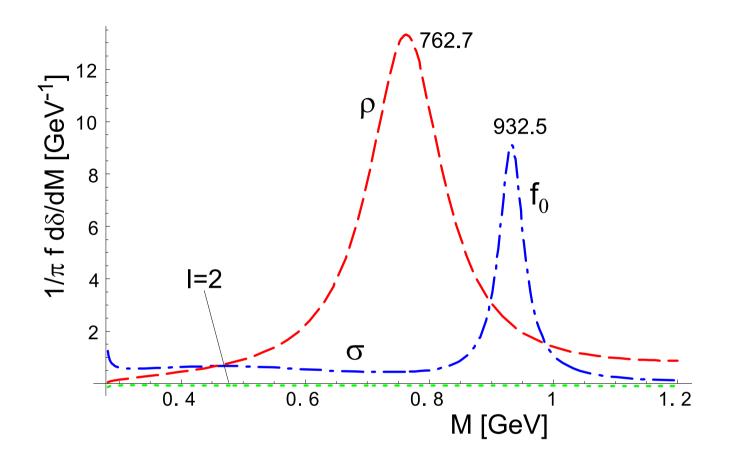
$$\frac{dn}{dM} = f \int \frac{d^3p}{(2\pi)^3} \frac{d\delta_{12}(M)}{\pi dM} \frac{1}{\exp\left(\frac{\sqrt{M^2 + p^2}}{T}\right) \pm 1}$$

In some works the spectral function of the resonance is used instead of the derivative of the phase shift. For narrow resonances this does not make a difference, since then $d\delta_{12}(M)/dM \simeq \pi \delta(M - m_R)$, and

$$n^{\text{narrow}} = f \int \frac{d^3 p}{(2\pi)^3} \frac{1}{\exp\left(\frac{\sqrt{m_R^2 + \mathbf{p}^2}}{T}\right) \pm 1}$$

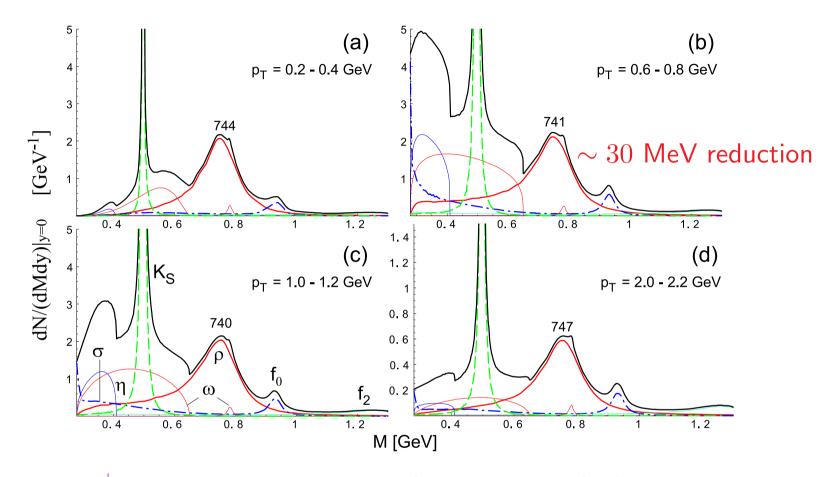
For wide resonances, or for effects of tails, the difference between the correct formula and the one with the spectral function is significant

 $d\delta_{\pi\pi}(M)/dM$



Small contribution from σ , negative and tiny contribution from I=2 peaks slightly shifted to lower M

Cuts/flow in the single-freeze-out model



The invariant $\pi^+\pi^-$ mass spectra in the single-freeze-out model for four sample bins in the transverse momentum of the pair, p_T , plotted as a function of M. η indicates $\eta + \eta'$. All kinematic cuts of the STAR experiment are incorporated

Role of the resonance decays

The calculation leads to the following enhancement factors coming from the decays of higher resonances:

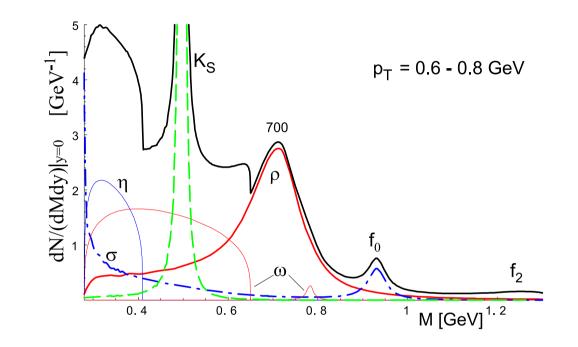
$$d_{K_S} = 1.98$$
, $d_\eta = 1.74$, $d_\sigma = 1.13$, $d_\rho = 1.42$, $d_\omega = 1.43$, $d_{\eta'} = 1.08$, $d_{f_0} = 1.01$, and $d_{f_2} = 1.28$

The effects is strongest for light particles, K_S , η , ρ , and ω , while it is weaker for the heavier η' and scalar mesons

Full model, with feeding from higher resonances and flow/cuts at $T=165~{\rm MeV}$ is similar to the naive model at $T=110~{\rm MeV}$!

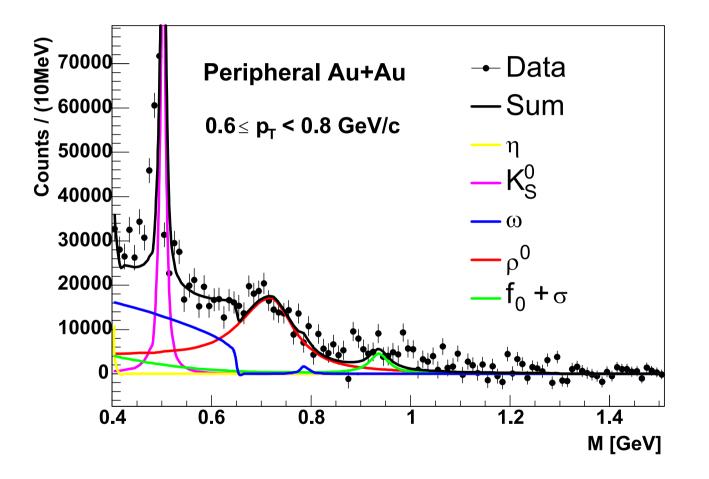
Thermal effects may reduce the rho-meson mass only by 30 MeV – there is a place for other dynamic effects

Medium effects?



Our model + position of ρ shifted down from the vacuum value by 9%

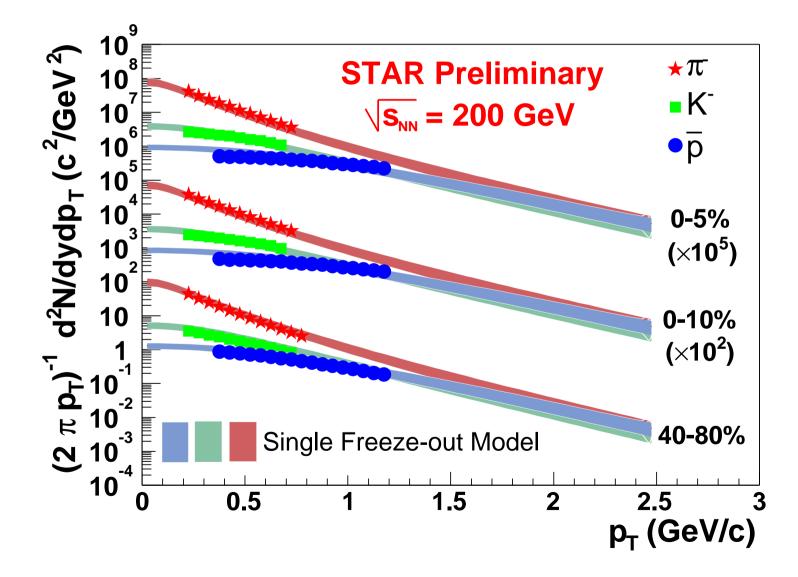
compiled by P. Fachini



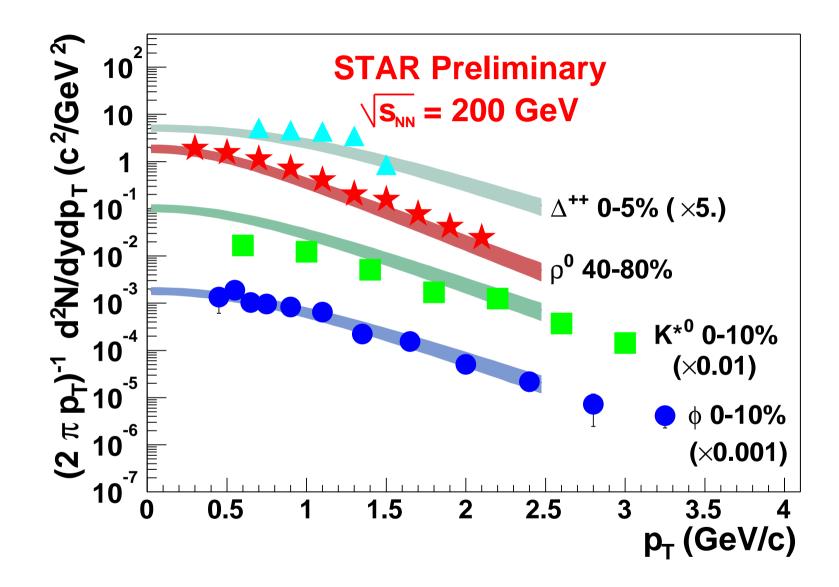
Ratios including resonances

	$m_ ho^*=770{ m MeV}$	$m_ ho^*=700~{ m MeV}$	Experiment
T [MeV]	$T = 165.6 \pm 4.5$	$T = 167.6 \pm 4.6$	
μ_B [MeV]	$\mu_B = 28.5 \pm 3.7$	$\mu_B = 28.9 \pm 3.8$	
η/π^-	0.120 ± 0.001	0.112 ± 0.001	
$ ho^0/\pi^-$	0.114 ± 0.002	0.135 ± 0.001	0.183 ± 0.028 (40-80%)
ω/π^{-}	0.108 ± 0.002	0.102 ± 0.002	
$K^{*}(892)/\pi^{-}$	0.057 ± 0.002	0.054 ± 0.002	
ϕ/π^-	0.025 ± 0.001	0.024 ± 0.001	
η'/π^-	0.0121 ± 0.0004	0.0115 ± 0.0003	
$f_0(980)/\pi^-$	0.0102 ± 0.0003	0.0097 ± 0.0003	0.042 ± 0.021 (40-80%)
$K^{*}(892)/K^{-}$	0.33 ± 0.01	0.33 ± 0.01	0.205 ± 0.033 (0-10%) 0.219 ± 0.040 (10-30%)
			$\begin{array}{c} 0.219 \pm 0.040 \ (1030\%) \\ 0.255 \pm 0.046 \ (3050\%) \end{array}$
			0.269 ± 0.047 (50-80%)
			0.022 ± 0.010 (0-7%)
$\Lambda(1520)/\Lambda$	0.061 ± 0.002	0.062 ± 0.002	0.025 ± 0.021 (40-60%)
			0.062 ± 0.027 (60-80%)
$\Sigma(1385)/\Sigma$	0.484 ± 0.004	0.485 ± 0.004	

compiled by P. Fachini



compiled by P. Fachini



Concept of the balance functions

S. Bass, P. Danielewicz, and S. Pratt, PRL 85 (2000) 2689

$$B(\delta, Y) = \frac{1}{2} \left\{ \frac{\langle N_{+-}(\delta) \rangle - \langle N_{++}(\delta) \rangle}{\langle N_{+} \rangle} + \frac{\langle N_{-+}(\delta) \rangle - \langle N_{--}(\delta) \rangle}{\langle N_{-} \rangle} \right\}$$

 N_{+-} and N_{-+} numbers of the unlike-sign pairs

 N_{++} and N_{--} numbers of the like-sign pairs

two members of a pair fall into the rapidity window Y, their relative rapidity is

$$\delta = \Delta y = |y_2 - y_1|$$

 N_+ (N_-) number of positive (negative) particles in the interval Y

Two contributions for the $\pi^+\pi^-$ balance function

1) RESONANCE CONTRIBUTION (R) is determined by the decays of neutral hadronic resonances which have a $\pi^+\pi^-$ pair in the final state

 $K_S, \eta, \eta', \rho^0, \omega, \sigma, f_0$

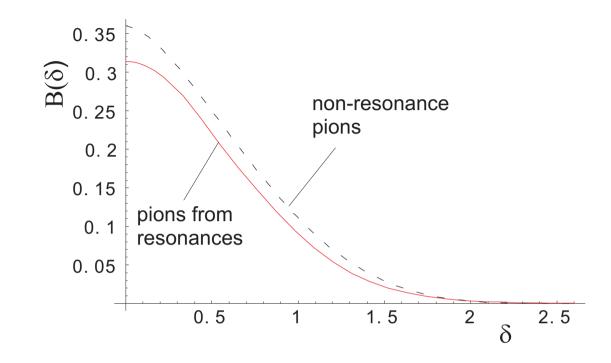
2) NON-RESONANCE CONTRIBUTION (NR) other possible correlations among the charged pions

in our approach the non-resonance two-particle distribution is determined by the local relative thermal momenta of particles

The pion balance function is constructed as a sum of the two terms

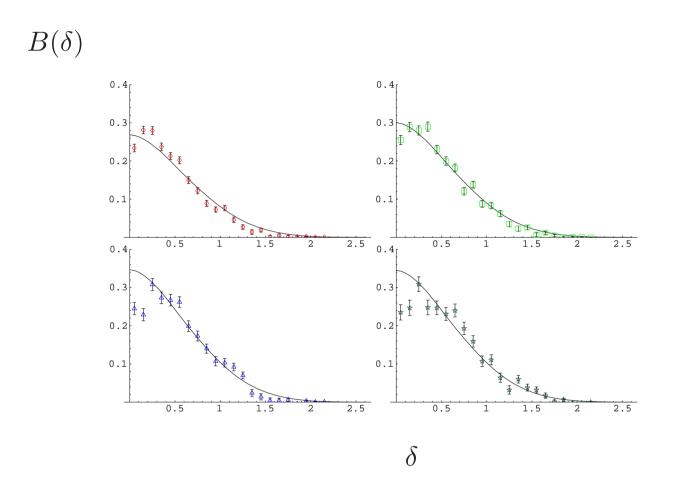
 $B(\delta, Y) = B_{\rm R}(\delta, Y) + B_{\rm NR}(\delta, Y)$

Results



 $\rho_{\max}/\tau = 0.9 \rightarrow \langle \beta_{\perp} \rangle = 0.5$ $\langle \delta \rangle \equiv \int_{0.2}^{2.4} \delta B(\delta) \, d\delta$ $\langle \delta \rangle_{NR} = 0.67, \ \langle \delta \rangle_{R} = 0.65, \ \langle \delta \rangle_{R+NR} = 0.66$ STAR measurement: $\langle \delta \rangle = 0.59$ for central, $\langle \delta \rangle = 0.66$ for peripheral

Fit to the STAR data



four different centralities: 0-10%, 10-40%, 40-70%, 70-96% rescaling factors: 0.40, 0.44, 0.51, 0.51 (χ^2 fits)

poor man's way of taking into account the detector efficiency

Summary

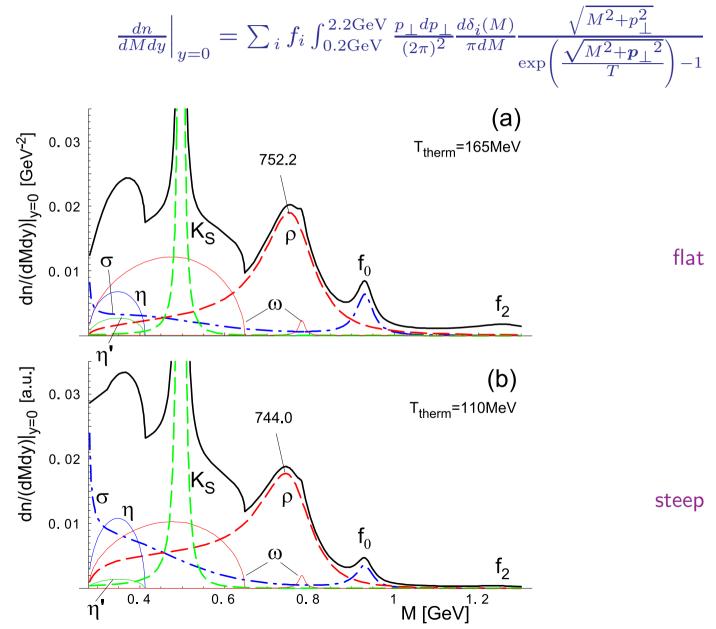
- 1. Single freeze-out model works well for the pion invariant-mass distributions and the pion balance functions; it gives similar results at T=165 MeV to the naive calculation at T=110 MeV, 4 parameters fitted long before by the ratios and spectra
- 2. Derivative of phase shift is used as weight, not the spectral density
- 3. Kinematic cuts and flow important, resonance decays important
- 4. Not possible to place the ρ peak at the experimental value (medium or other effects?)
- 5. The resonance contribution to the pion balance function is determined in the unique way, the form of the non-resonance contribution should be assumed
- 6. The two calculated contributions have similar δ -dependence, the width of the sum is larger (12%) than the width measured by STAR for central events, however the shape is quite right except for the very small values of δ where the Bose-Einstein correlations are important
- 7. The overall normalization must be fitted in order to take into account the effect of the efficiency of the detector, this brings a relatively large factor ~ 0.50

single freeze-out model describes well: ratios, spectra, $R_{\rm out}/R_{\rm side} \approx 1$, v_2 (with two extra parameters), invariant masses, balance functions,....

Back-up slides

Warm-up calculation - static source

We compute the spectra at mid-rapidity, hence



The STAR cuts

The cuts in the STAR analysis of the $\pi^+\pi^-$ invariant-mass spectra have the following form (Fachini):

$$|y_{\pi}| \leq 1,$$

 $|\eta_{\pi}| \leq 0.8,$ (1)
 $0.2 \text{ GeV} \leq p_{\pi}^{\perp} \leq 2.2 \text{ GeV},$

while the bins in $p_T \equiv |\mathbf{p}_{\pi}^{\perp} + \mathbf{p}_{\pi}^{\perp}|$ start from the range 0.2 - 0.4 GeV, and step up by 0.2 GeV until 2 - 2.4 GeV.

For two-body decays, the relevant formula for the number of pairs of particles $1 \mbox{ and } 2$ has the form

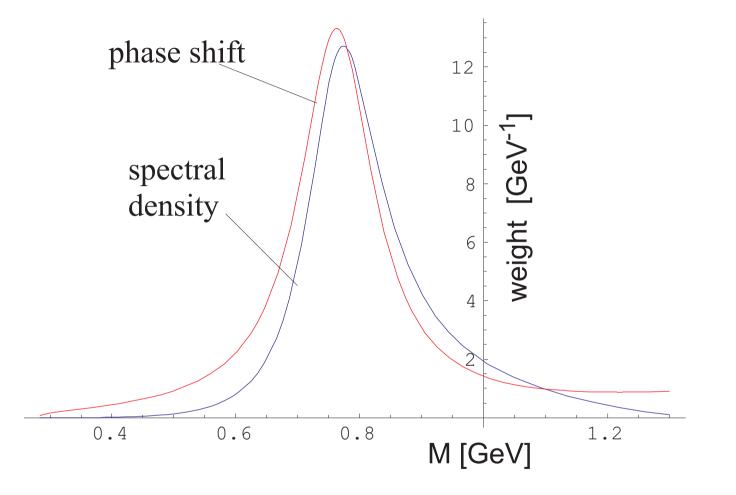
$$\frac{dN_{12}}{dM} = \frac{d\delta_{12}}{dM} \frac{bm}{p_1^*} \int_{p_{1,\text{low}}^{\perp}}^{p_{1,\text{high}}^{\perp}} \frac{dp_1^{\perp}}{\int_{y_{1,\text{low}}}^{y_{1,\text{high}}} \frac{dy_1}{\int_{p_{\text{low}}^{\perp}}^{p_{\text{high}}^{\perp}} \frac{dp^{\perp}}{\int_{y_{\text{low}}}^{y_{\text{high}}} \frac{dy_2}{\int_{y_{\text{low}}}^{y_{\text{high}}} \frac{dy_2}{\int_{y_1}^{y_2} \frac{dy_2}{\int_{y_2}^{y_2} \frac{dy_2} \frac{dy_2}{\int_{y_2}^{y_2} \frac{dy_$$

Lowering the ρ mass

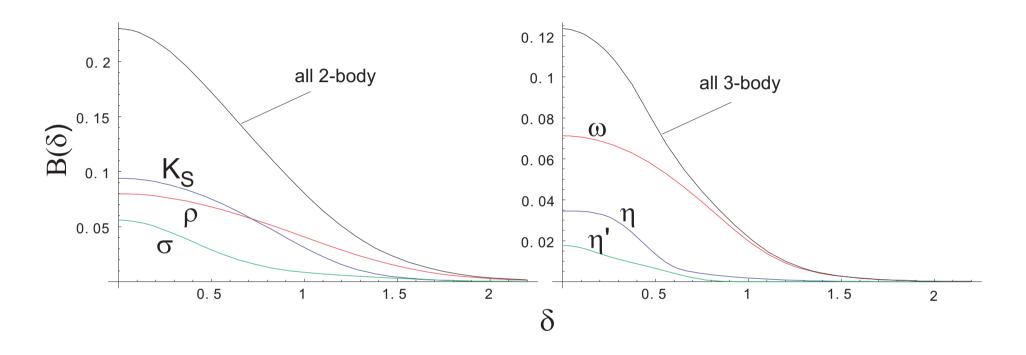
In order to show how the medium modifications will show up in the $\pi^+\pi^-$ spectrum, we have scaled the $\pi\pi$ phase shift in the ρ channel, according to the simple law

$$\delta_1^1(M)_{\text{scaled}} = \delta_1^1(s^{-1}M)_{\text{vacuum}},\tag{3}$$

Phase shift vs. spectral density



Anatomy of the resonance contribution



heavier resonance - wider

two-body wider than three-body