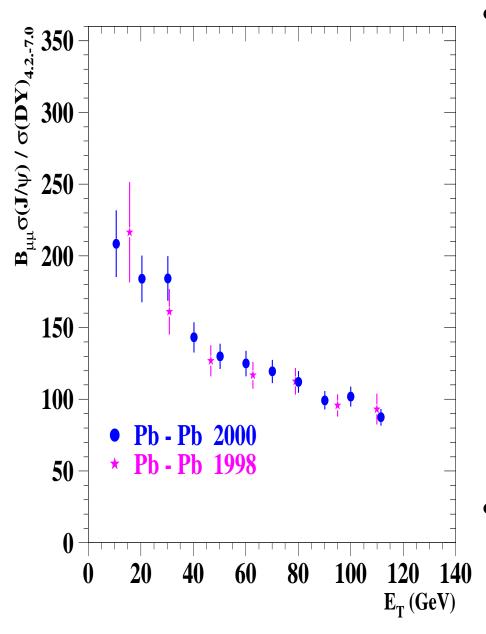

New results on J/ ψ and ψ / nuclear absorption in p-A and S-U collisions at the CERN/SPS

Gonçalo Borges, LIP-Lisbon

for the

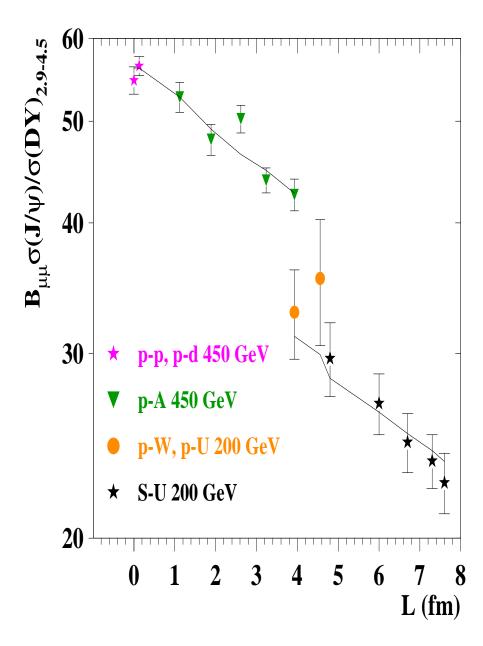
NA50 Collaboration



Outline

- Motivation: Why collect proton data?
- State of the art (QM2002)
- The experimental apparatus
- Analysis method
- J/ ψ , ψ ' and DY cross-sections at 400 GeV
- Comparison with previous p-A and light ion results
- Conclusions

Motivation: Why collect proton data?

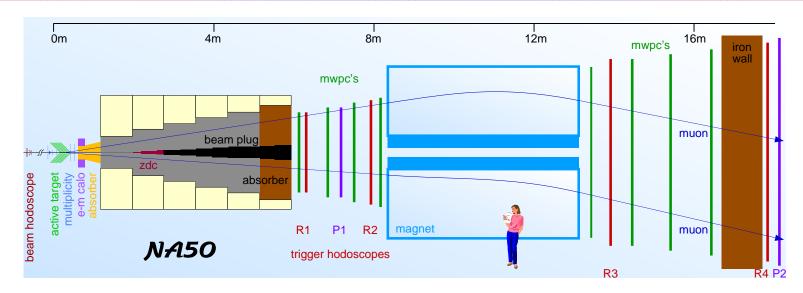

• NA50 studies J/ ψ production in Pb-Pb collisions

In order to distinguish between J/ψ absorption in nuclear matter & any J/ψ abnormal suppression it is necessary to do a systematic study with several systems where it is assumed that only normal absorption plays a role.

A good baseline is needed

→ Such a baseline can be provided by proton-nucleus data.

The state of the art (QM2002)



- Data are plotted as a function of the average distance traveled by the $c\overline{c}$ pair through nuclear matter.
- A Simultaneous Glauber fit is performed using $\frac{\psi}{DY_{2.9-4.5}}$ results from
 - \hookrightarrow p-p, p-d at 450 GeV
 - \hookrightarrow p-A 98/00 at 450 GeV
 - \hookrightarrow p-U, p-W at 200 GeV
 - \hookrightarrow S-U at 200 GeV
- The line joins together the results of the best Glauber fit which leads to

$$\hookrightarrow \sigma_{\rm abs}^{\psi} = 4.4 \pm 0.5 \text{ mb}$$

$$(\chi^2/dof = 1.0)$$

The experimental setup

 J/ψ is detected via its decay into muon pairs $J/\psi o \mu^+\mu^-$

Dimuon detection in:

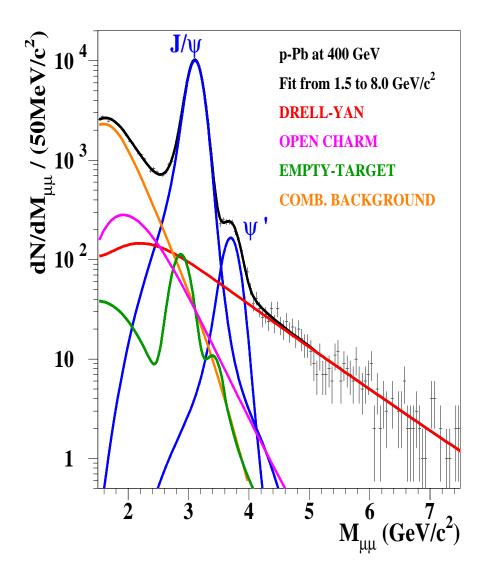
$$2.92 < y_{\rm Lab} < 3.92 \quad |\cos \theta_{\rm CS}| < 0.5$$

- Proton beams at 450 or 400 GeV energy
 - → 3 independent detectors to measure the number of incident protons
- Several fixed targets: Be, Al, Cu, Ag, W, Pb
- Typical acceptances:

$$\hookrightarrow \mathcal{A}^{J/\psi}$$
 = 13.8 %, $\mathcal{A}_{2.9-4.5}^{\mathrm{DY}}$ = 14.5%, $\mathcal{A}^{\psi\prime}$ = 16.3%

NA50 p-A runs

Data sample	Energy (GeV)	target thicknesses	targets	beam intensity (protons/s)	N $^{J/\psi}$ ($ imes$ 10 3)
1996-1998	450	26-39 $\%~\lambda_I$	Be,AI,Cu,Ag,W	(4 - 13) $ imes 10^8$	350 : 800
1998-2000	450	26-39 $\%~\lambda_I$	Be,AI,Cu,Ag,W	(0.8 - 2.5) $\times 10^8$	80 : 180
2000	400	26-39 $\%~\lambda_I$	Be,AI,Cu,Ag,W,Pb	(9 - 13) $ imes 10^8$	38:68


- Absolute cross-sections from data collected in different years are affected by different systematic effects giving additional problems to the study of the charmonia absorption using several target nuclei
- To minimize such systematics, the last NA50 p-A run was taken
 - → On a very short period of time at high intensity
 - → Using 6 targets on a run by run rotating regime

The goal of the last 2000 NA50 p-A run was to precisely measure the J/ ψ absorption cross-section

Analysis method

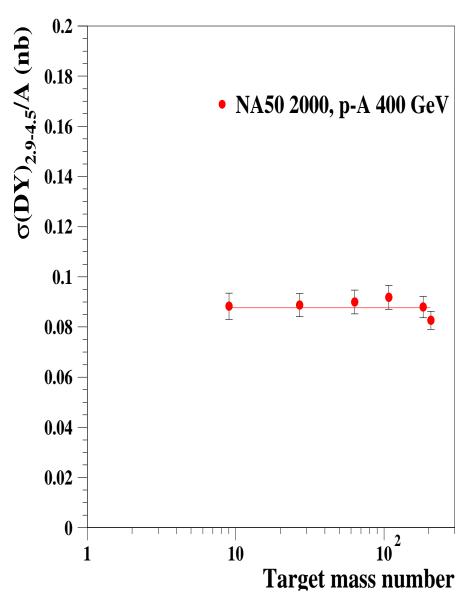
$$rac{d\mathbf{N}}{d\mathbf{M}_{\mu\mu}} \,=\, \mathbf{N_{J/\psi}} rac{d\mathbf{N_{J/\psi}}}{d\mathbf{M}} + \mathbf{N_{\psi\prime}} rac{d\mathbf{N_{\psi\prime}}}{d\mathbf{M}} + \mathbf{N_{DY}} rac{d\mathbf{N_{DY}}}{d\mathbf{M}} + \mathbf{N_{Dar{D}}} rac{d\mathbf{N_{Dar{D}}}}{d\mathbf{M}} + rac{d\mathbf{N_{Bkg}}}{d\mathbf{M}} + rac{d\mathbf{N_{Empty}}}{d\mathbf{M}}$$

Opposite sign mass spectrum ingredients

$$\hookrightarrow$$
 J/ $\psi \rightarrow \mu^+\mu^-$

$$\hookrightarrow \psi \prime \rightarrow \mu^+ \mu^-$$

$$\hookrightarrow$$
 Drell-Yan ($qar q o \mu^+\mu^-$)


- \hookrightarrow Combinatorial background

$$N_{\rm Bkg}^{+-} = 2R\sqrt{N^{++}N^{--}}$$

MC is treated as real data

→ Acceptances and line shapes are determined via Monte Carlo and spectrometer simulation

DY cross-sections at 400 GeV

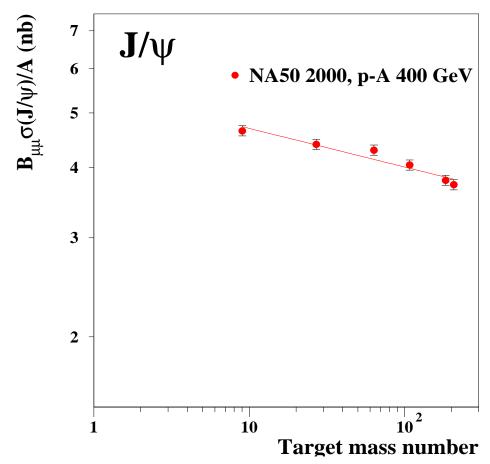
$$\sigma_{\mathrm{p-A}}^{\mathrm{DY}} = \sigma_0^{\mathrm{DY}} \times A^{\alpha}$$

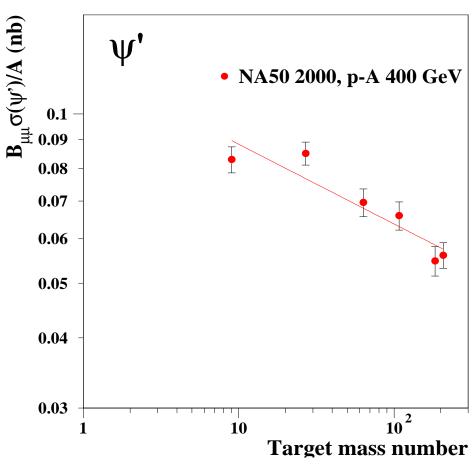
- α^{DY} is expected to be 1 since DY production is proportional to the number of nucleon nucleon collisions
- The fit to our data leads to

$$\alpha^{\text{DY}} = 0.986 \pm 0.018 \pm 0.008$$

$$(\chi^2/dof = 0.6)$$

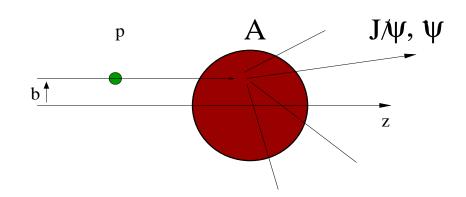
in nice agreement with the expectation.


Nuclear effects (shadowing) are negligible in the explored phase space


J/ψ and ψ ' absorption in nuclear matter

$$\sigma_{\rm p-A}^{J/\psi,\psi\prime} = \sigma_0^{J/\psi,\psi\prime} \times A^{\alpha}$$

$$\alpha^{J/\psi} = 0.931 \pm 0.002 \pm 0.007$$
 $(\chi^2/dof = 1.4)$


$$\alpha^{\psi'} = 0.858 \pm 0.017 \pm 0.008$$

 $(\chi^2/dof = 2.2)$

 \bigstar Data show a larger ψ / absorption as compared to J/ ψ

The Glauber model

$$\sigma_{\rm p-A} = A \, \sigma_{\rm NN}$$

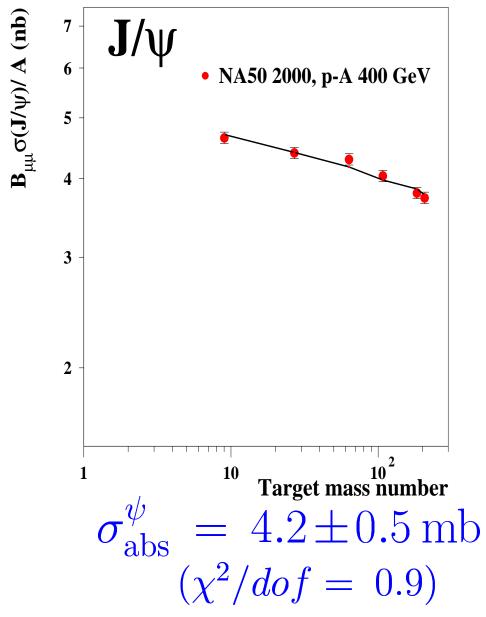
 \hookrightarrow After production, charmonia states can interact with the surrounding nuclear matter with a given cross-section (σ_{abs}).

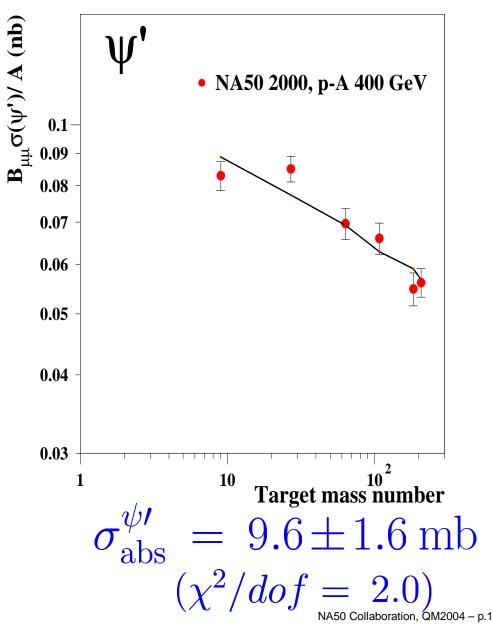
 Taking into account both processes

 \hookrightarrow production of the charmonium state,

→ Possible absorption on it's way through nuclear matter, we get:

$$\frac{\sigma_{p-A}}{A} = \sigma_0 \frac{1}{(A-1)\sigma_{abs}} \times \int d^2b \ e^{-(A-1)T_A(\vec{b}) \ \sigma_{abs}}$$


 $T_A(ec{b})$: Nuclear thickness function


 Charmonia experimental cross-sections can be fitted using this Glauber model with 2 free parameters:

$$\hookrightarrow \sigma_0, \ \sigma_{abs}$$

$\sigma_{ m abs}$ results with Glauber model

• J/ ψ and ψ ' results

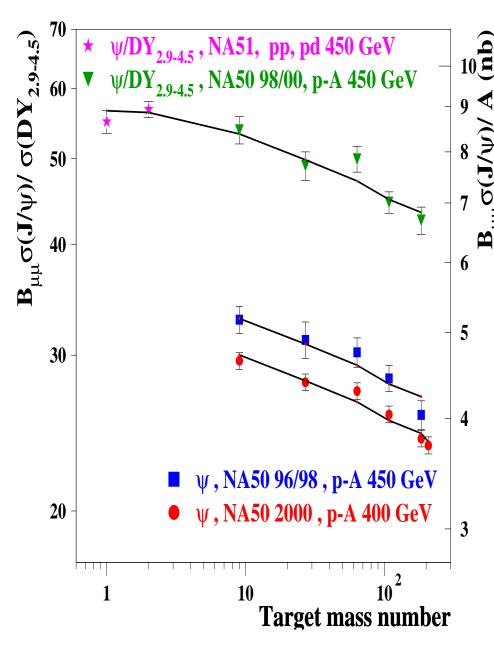
Comparison: All NA50 p-A data

3 NA50 p-A data samples:

- → 96/98 data, High Intensity, 450 GeV [1]
- \hookrightarrow 98/00 data, Low Intensity, 450 GeV (average of analyses [1,2])
- \hookrightarrow 2000 data, 400 GeV

Values from the different p-A samples

Individual $\sigma_{\rm abs,\ p-A}$ Glauber fits


Data	\sqrt{s} (GeV)	$\sigma_{ m abs}^{\psi}$ (mb)	χ^2 /dof	$\sigma_{ m abs}^{\psi\prime}$ (mb)	χ^2 /dof
1996-1998 (HI)	29.1	4.8 \pm 1.0	0.8	8.0 \pm 1.4	1.2
1998-2000 (LI)	29.1	4.7 \pm 1.0 $(*)$	1.0	6.0 \pm 1.9	0.6
2000 (VHI)	27.4	4.2 \pm 0.5	0.9	9.6 \pm 1.6	2.0

- All results are **Compatible** \hookrightarrow Perform **Simultaneous fit**
- (*) Estimated from $\frac{B_{\mu\mu}\sigma(\psi)}{\sigma(DY_{2.9-4.5})}$
- [1] Euro Phys J C, in print.
- [2] B. Alessandro et al. (NA50 Collaboration), Phys. Lett. B553 (2003) 167.

Simultaneous fit

- Method to estimate J/ ψ absorption
 - \hookrightarrow Use the best estimate of each individual analysis ($rac{\psi}{DY}$ or ψ)
 - \hookrightarrow Fit all samples with a common σ_{abs}
- Method to estimate ψ / absorption
 - \hookrightarrow Use the best estimate of each individual analysis ($rac{\psi \prime}{\psi}$)
 - \hookrightarrow Fit all samples with a common σ_{abs}
 - \hookrightarrow Assume that there is no $\frac{\psi\prime}{\psi}$ energy dependence.
- For the last NA50 p-A data set
 - \hookrightarrow Luminosity systematic errors have been neglected since they affect all targets in essentially the same way (no effect on σ_{abs} measurement).

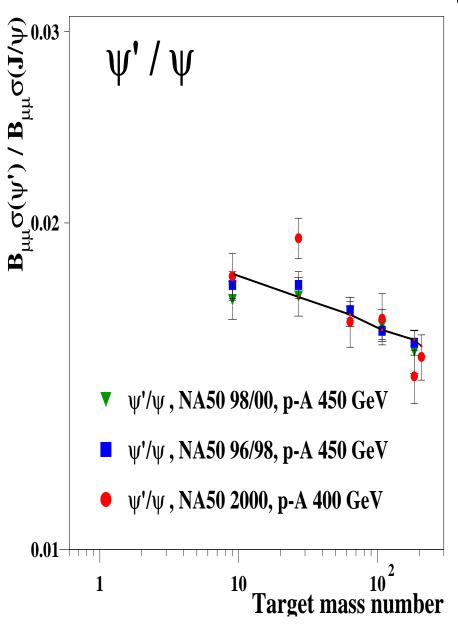
$\sigma_{ m abs}^{\psi}$ simultaneous fit in p-A data

Perform a simultaneous Glauber fit

with
$$\frac{B_{\mu\mu}\sigma(\psi)}{\sigma(DY_{2.9-4.5})}$$
 results from :

 \hookrightarrow p-p, p-d at 450 GeV

→ p-A 98/00 at 450 GeV


and $\frac{B_{\mu\mu}\sigma(\psi)}{A}$ results from:

→ p-A 96/98 at 450 GeV

 \hookrightarrow p-A 2000 at 400 GeV

Glauber fit	$\sigma_{ m abs}^{\psi}$ (mb)	χ^2 /dof	
Without p-p, p-d	4.4 \pm 0.4	0.8	
With p-p, p-d	4.3 \pm 0.3	0.7	
${\sf A}^lpha$ fit	$lpha^{\psi}$	χ^2 /dof	
Without p-p, p-d	$\textbf{0.929} \pm \textbf{0.006}$	1.1	
With p-p, p-d	0.941 ± 0.004	1.7	

$\sigma_{ m abs}^{\psi\prime}$ simultaneous fit in p-A data

• Performing a simultaneous Glauber fit using $\frac{\psi\prime}{\psi}$ results from:

 \hookrightarrow p-A 98/00 at 450 GeV

→ p-A 96/98 at 450 GeV

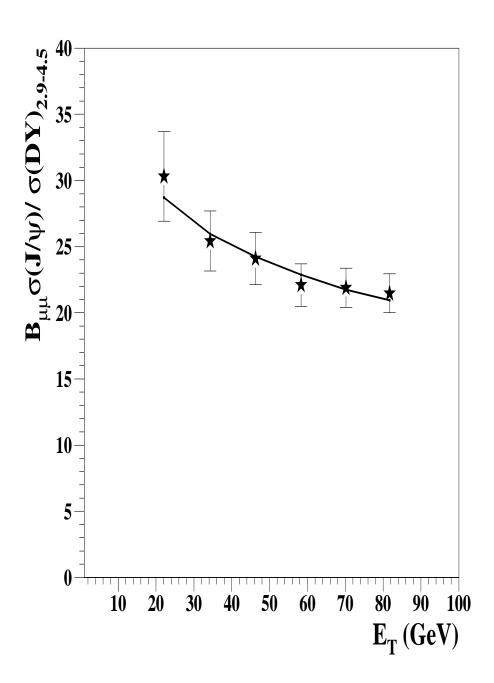
 \hookrightarrow p-A 2000 at 400 GeV

and assuming a J/ ψ absorption

$$\sigma_{abs}^{\psi}=4.4\pm0.4~\mathrm{mb}$$
 we get

Glauber fit
$$\sigma_{
m abs}^{\psi\prime}$$
 (mb) χ^2 /dof 7.9 \pm 0.6 1.0

$$\sigma_{\rm abs}^{\psi\prime} - \sigma_{\rm abs}^{\psi} = 3.5 \pm 0.7 \,\mathrm{mb}$$


$\sigma_{ m abs}^{\psi}$ from NA38 S-U published data

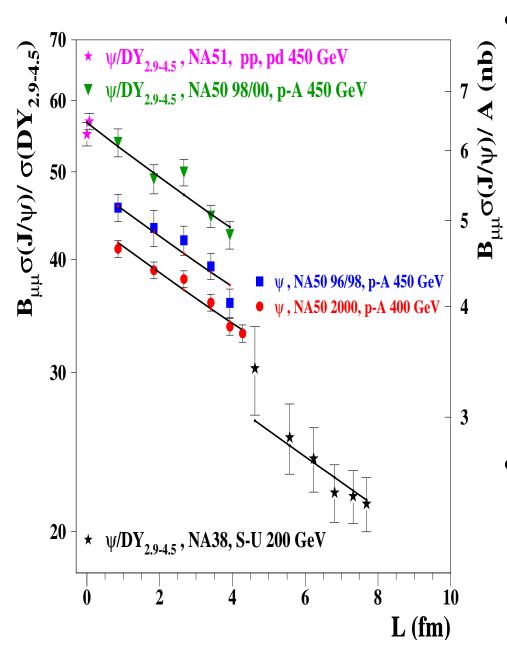
- NA38 has measured $\frac{B_{\mu\mu}\sigma(\psi)}{\sigma(DY_{2.9-4.5})}$ at 200 GeV as a function of E $_{T}$.
 - \hookrightarrow The full Glauber model taking into account the centrality of the collision can be used to obtain the J/ ψ absorption in light ions collisions.
 - → Published results show

$$\sigma_{\rm abs}^{\psi}(S-U) = 7.1 \pm 3.0 \text{ mb}$$

- NA38 S-U data are now reanalysed using the best of our present knowledge.
 - \hookrightarrow Same methods and procedures as used in Pb-Pb analyses

S-U reanalysis results

- Reanalysis conditions:
 - \hookrightarrow 6 different bins
 - \hookrightarrow MRS A (low Q²) set of PDF
 - → Same analysis procedure as used in NA50 PbPb data.
- New absorption cross-section extracted from S-U collisions:


$$\sigma_{\rm abs}^{\psi} = 7.2 \pm 3.2 \; {\rm mb}$$

- Error bar is due to the:
 - **→** Small Drell-Yan statistics
 - \hookrightarrow Large correlation between normalization and $\sigma_{\rm abs}^{\psi}$

$$\sigma_{
m abs}^{\psi}$$
 (p-A) $\sigma_{
m abs}^{\psi}$ (S-U)

4.3
$$\pm$$
 0.3 mb 7.2 \pm 3.2 mb

Simultaneous Glauber fit with p-A and S-U

Perform a simultaneous Glauber fit

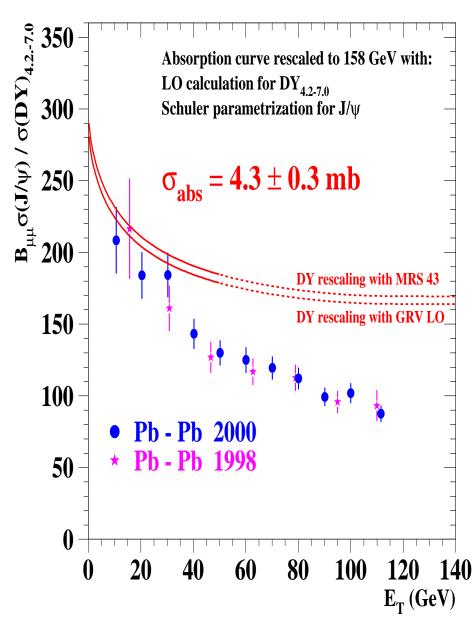
with
$$\frac{B_{\mu\mu}\sigma(\psi)}{\sigma(DY_{2.9-4.5})}$$
 results from :

 \hookrightarrow p-p, p-d at 450 GeV

→ p-A 98/00 at 450 GeV

 \hookrightarrow S-U at 200 GeV

and $\frac{B_{\mu\mu}\sigma(\psi)}{A}$ results from:


 \hookrightarrow p-A 96/98 at 450 GeV

 \hookrightarrow p-A 2000 at 400 GeV

• New estimate of J/ ψ absorption:

$$\sigma_{abs}^{\psi} = 4.3 \pm 0.3 \text{ mb}$$

 $(\chi^2/dof = 0.6)$

Comparison with Pb-Pb results

An absorption curve can be drawn as a function of E_T :

 \hookrightarrow Using the Glauber model, the measured σ_{abs}^{ψ} and accounting for the different NA38 and NA50 calorimeter resolutions we can calculate the expected nuclear absorption for Pb-Pb collisions as a function of E_T .

→ The curve normalization is estimated from the S-U data rescaled to the Pb-Pb kinematical conditions.

 \hookrightarrow The 2 curves represent the uncertainty on the absorption curve due to the DY_{4.2-7.0} rescale from 200 to 158 GeV.

Conclusions

- Results from a new NA50 p-A data set, at 400 GeV incident energy, are now available
 - \hookrightarrow Systematics are minimized with rotating targets.
 - \hookrightarrow Data taking aimed for $\sigma_{
 m abs}^{\psi}$ measurement.
- Global $\sigma_{\rm abs}^{\psi}$ and $\sigma_{\rm abs}^{\psi\prime}$ are obtained by means of a simultaneous fit using the best estimates of each NA50 p-A analyses

Global fit
$$\sigma_{\rm abs}^{\psi}$$
 (mb) $\sigma_{\rm abs}^{\psi\prime}$ (mb) $\sigma_{\rm abs}^{\psi\prime}$ - $\sigma_{\rm abs}^{\psi}$ (mb) 4.3 \pm 0.3 7.9 \pm 0.6 3.5 \pm 0.7

- Old NA38 S-U data were reanalysed and from it we obtain an absorption cross-section of $\sigma_{\rm abs}^{\psi}=7.2\pm3.2~mb$.
- From a simultaneous fit including all NA50 p-A results and NA38 S-U reanalysis results we obtain $\sigma_{\rm abs}^{\psi}=4.3\pm0.3~mb$.

Good precision in the J/ ψ absorption cross-section measurement.

NA50 Collaboration Institutions

- Università del Piemonte Orientale, Alessandria and INFN-Torino, Italy
- LAPP, CNRS-IN2P3, Annecy-le-Vieux, France
- LPC, Univ. Blaise Pascal and CNRS-IN2P3, Aubière, France
- IFA, Bucharest, Romania
- Università di Cagliari/INFN, Cagliari, Italy
- CERN, Geneva, Switzerland
- LIP, Lisbon, Portugal
- INR, Moscow, Russia
- IPN, Univ. de Paris-Sud and CNRS-IN2P3, Orsay, France
- Laboratoire Leprince-Ringuet, Ecole Polytechnique and CNRS-IN2P3,
 Palaiseau, France
- Università di Torino/INFN, Torino, Italy
- IPN, Univ. Claude Bernard Lyon-I and CNRS-IN2P3, Villeurbanne, France
- YerPhI, Yerevan, Armenia