J/ψ and η_c in the Deconfined Plasma from Lattice QCD

Masayuki Asakawa

Kyoto University

in collaboration with Tetsuo Hatsuda (University of Tokyo)

Phys. Rev. Lett. 92 (2004) 012001 PLUS New Data

QM2004, Oakland CA, U.S.A.

January 16, 2004

PLAN

- Spectral Function
- Necessity of MEM (Maximum Entropy Method)
 - MEM Outline
 - Importance of Error Analysis
- Finite Temperature Results for J/ψ and η_c
 - Error Analysis
 - Statistical
 - Systematic

Spectral Function

Definition of Spectral Function

$$\frac{A_{\eta\eta'}(k_0,\vec{k})}{(2\pi)^3} \equiv \sum_{n,m} \frac{e^{-E_n/T}}{Z} \langle n | J_\eta(0) | m \rangle \langle m | J_{\eta'}^{\dagger}(0) | n \rangle (1 \mp e^{-P_{\eta m}^0/T}) \delta^4(k^{\mu} - P_{\eta m}^{\mu}) - (+) : \text{Boson(Fermion)}$$

$$J_\eta(0): \text{ A Heisenberg Operator with some quantum } \#$$

$$|n\rangle : \text{ Eigenstate with 4-momentum } P_n^{\mu}$$

$$P_{mn}^{\mu} = P_m^{\mu} - P_n^{\mu}$$

Pretty important function to understand QCD

Dilepton production rate, Real Photon production rate, ...etc.

$$\frac{dN(e^+e^- \text{ production at } T)}{d^4xd^4k} = -\frac{\alpha^2}{3\pi^2k^2} \frac{A^{\mu}_{\mu}(k_0,\vec{k})}{e^{k_0/T}-1}$$

holds regardless of states, either in Hadron phase or QGP

Hadron Modification in HI Collisions?

Experimental Data

(d²N_{ee} /dηdm) / (dN_{ch} /dη) (100 MeV/c²)⁻¹ CERES/NA45 S-Au 200 GeV/u 10 2.1 < **η** < 2.65 $p_{\perp} > 200 \text{ MeV/c}$ $\Theta_{aa} > 35 \text{ mrad}$ $\langle dN_{ch}/d\eta \rangle = 125$ 10 \rightarrow ,ee π 3/0 10 charm _0 10 0.5 0 1 $m_{ee} (GeV/c^2)$

Comparison with Theory (with no hadron modification)

Lattice? But there was difficulty ...

• What's measured on Lattice is Correlation Function $D(\tau)$

$$D(\tau) = \int \left\langle O(\tau, \vec{x}) O^{\dagger}(0, \vec{0}) \right\rangle d^{3}x$$

$$D(\tau)$$
 and $A(\omega) \equiv A(\omega, \vec{0})$ are related by

Measured in Imaginary Time

 $D(\tau) = \int_0^\infty K(\tau, \omega) A(\omega) \, d\omega$

- Measured at a Finite Number of discrete points

M. Asakawa (Kyoto University)

 χ^2 -fitting : inconclusive !

Difficulty on Lattice

Thus, what we have is

Inversion Problem

$$D(\tau) = \int_{0}^{\infty} K(\tau, \omega) A(\omega) d\omega$$
$$D(\tau) \Rightarrow A(\omega)$$
$$f$$
d is crete continuous
noisy

Difficulty on Lattice

Thus, what we have is

Inversion Problem

$$D(\tau) = \int_0^\infty K(\tau, \omega) A(\omega) \, d\omega$$
$$D(\tau) \Rightarrow A(\omega)$$

Typical ill-posed problem Problem since Lattice QCD was born

Principle of MEM

MEM

a method to infer the most statistically probable image $(= A(\omega))$ given data

In MEM, Statistical Error can be put to the Obtained Image

Theoretical Basis: Bayes' Theorem

 $P[X|Y] = \frac{P[Y|X]P[X]}{P[Y]}$ P[X|Y] : Probability of X given Y

In Lattice QCD

Bayes Theorem

D: Lattice Data (Average, Variance, Correlation...etc.)

H: All definitions and *prior knowledge* such as $A(\omega) \ge 0$

 $\square \qquad P[A|DH] \propto P[D|AH]P[A|H]$

In MEM, basically Most Probable Spectral Function is calculated

Ingredients of MEM

•
$$P[D|AH] = \chi^2$$
-like linood function
 $P[D|AH] = \exp(-L)/Z_L$

 $\bullet P[A|H]$

given by Shannon-Jaynes Entropy

$$P[A|H\alpha m] = \frac{\exp(\alpha S)}{Z_s}$$

$$S = \int \left[A(\omega) - m(\omega) - A(\omega) \log\left(\frac{A(\omega)}{m(\omega)}\right) \right] d\omega$$

$$Z_s = \int e^{\alpha S}[dA], \quad \alpha \in \mathbf{R}$$

$$\max at$$

$$A(\omega) = m(\omega)$$

Default Model $m(ω) ∈ \mathbf{R}$: Prior knowledge about A(ω)such as semi-positivity, perturbative asymptotic value, …etc.

Y. Nakahara, and T. Hatsuda, and M. A., Prog. Part. Nucl. Phys. 46 (2001) 459

Error Analysis in MEM (Statistical)

MEM is based on Bayesian Probability Theory

• In MEM, Errors can be and must be assigned

• This procedure is *essential* in MEM Analysis

For example, Error Bars can be put to

Average of Spectral Function in
$$I = [\omega_1, \omega_2], \quad \langle A_{\alpha} \rangle_I = \frac{1}{\omega_2 - \omega_1} \int_{\omega_1}^{\omega_2} A_{\alpha}(\omega) d\omega$$

$$\begin{cases} \langle (\delta A_{\alpha})^2 \rangle_I = \frac{1}{(\omega_2 - \omega_1)^2} \int [dA] \int_{I \times I} d\omega d\omega' \delta A(\omega) \delta A(\omega') P[A | DH \alpha m] \\ = -\frac{1}{(\omega_2 - \omega_1)^2} \int_{I \times I} d\omega d\omega' \left(\frac{\delta^2 Q(A)}{\delta A(\omega) \delta A(\omega')} \right)_{A=A_{\alpha}}^{-1} \end{cases}$$
Gaussian approximation

$$\delta A(\omega) = A(\omega) - A_{\alpha}(\omega)$$

$$Q(A) = \alpha S - L$$

$$[dA] = \prod_{l=1}^{N_{\omega}} \frac{dA_l}{\sqrt{A_l}}$$

Result of Mock Data Analysis (1)

N(# of data points)-b(noise level) dependence

Result of Mock Data Analysis (2)

Application of MEM to Lattice Data (T=0)

Resonance Physics has become possible on Lattice

What Result of Mock Data Analysis tells us

Parameters on Lattice

- 1. Lattice Sizes $32^3 * 32 (T = 2.33T_c)$ $40 (T = 1.87T_c)$ $42 (T = 1.78T_c)$ $44 (T = 1.70T_c)$ $46 (T = 1.62T_c)$ $54 (T = 1.38T_c)$ $72 (T = 1.04T_c)$ $80 (T = 0.93T_c)$ $96 (T = 0.78T_c)$
- 2. $\beta = 7.0, \ \xi_0 = 3.5$ $\xi = a_{\sigma}/a_{\tau} = 4.0$ (anisotropic)
- **3.** $a_{\tau} = 9.75 * 10^{-3}$ fm $L_{\sigma} = 1.25$ fm
- 4. Standard Plaquette Action

- 5. Wilson Fermion
- 6. Heatbath : Overrelaxation = 1 : 4

1000 sweeps between measurements

- 7. Quenched Approximation
- 8. Gauge Unfixed
- 9. $\mathbf{p} = \mathbf{0}$ Projection
- 10. Machine: CP-PACS

Parameters in MEM analysis

Default Models used in the Analysis

channel	PS	V
$m(\omega)/\omega^2$	1.15	0.40

With Renormalization of Each Composite Operator on Lattice The m-dependence of the result is weak

Continuum Kernel

Small Enough Temporal Lattice Spacing

Data Points at $\tau / a_{\tau} = 0, \dots, 3, N_{\tau} - 3, \dots, N_{\tau} - 1$ are not used

 $|\vec{p}|, \omega \le \pi / a_{\sigma} \text{ and } a_{\sigma} / a_{\tau} = 4$ Information at $\omega \ge \pi / a_{\sigma}$: not physical

Data at these points can be dominated by such *unphysical* noise

Parameters in MEM Analysis (cont'd)

Furthermore, in order to fix resolution, a fixed number of data points (default value = 33 or 34) are used for each case

Dependence on the Number of Data Points is also studied (systematic error estimate)

Number of Configurations

$$N_{\sigma} = 32, \ \beta = 7.0, \ \xi = 4.0$$

As of January 16, 2004

Polyakov Loop and PL Susceptibility

Result for V channel (J/ψ)

Result for PS channel (η_c)

Statistical Significance Analysis for J/ψ

Statistical Significance Analysis for η_c

Dependence on Data Point Number (1)

Dependence on Data Point Number (2)

Debye Screening in QGP

Original Idea of J/ ψ Suppression as a signature of QGP Formation: Debye Screening (Matsui & Satz, 1986)

Need to start over asking a question "What is QGP?"?

Summary and Perspectives

- Spectral Functions in QGP Phase were obtained for heavy quark systems at p = 0 on large lattices at several T
- Both Statistical and Systematic Error Estimates have been carefully carried out

It seems J/ψ and η_c ($\mathbf{p} = \mathbf{0}$) remain in QGP up to ~1.6 T_c

- Sudden Qualitative Change between 1.62T_c and 1.70T_c
- ~34 Data Points look sufficient to carry out MEM analysis on the present Lattice and with the current Statistics (This is Lattice and Statistics dependent)
- Physics behind is still unknown

Further study needed for better understanding of QGP and Hadronic Modes in QGP !

Back Up Slides

Why Theoretically Unsettled

Way out ?

Example of χ^2 -fitting failure

Dependence on Data Point Number

Dependence on Data Point Number

Dependence on Data Point Number

 $N_{\tau} = 46 \ (T = 1.62T_c)$ PS channel (η_c)

