Particle correlations at RHIC from parton coalescence dynamics

- First results -

Dénes Molnár

The Ohio State University, Columbus, OH, USA

Quark Matter 2004

January 11-17, 2004, Oakland, CA

Outline

• Motivation

- why parton coalescence?

• Dynamical parton coalescence model

- what is new?

• First results

- particle spectra
- elliptic flow
- angular correlations (?)

Why parton coalescence?

Two surprises at RHIC

baryon non-suppression

elliptic flow scaling w/ quark number

d'Enterria [PHENIX], Sorensen [STAR]:

Parton coalescence

Hwa, Yang, Biró, Zimányi, Lévai, Csizmadia, Ko, Lin, Voloshin, D.M., Greco, Fries, Müller, Nonaka, Bass, ...

In addition to jet fragmentation

other hadronization channels via parton coalescence/recombination

- simple estimates show coalescence can dominate in AuAu at RHIC out to $4-6~{\rm GeV}$ in p_{\perp}

Simple coalescence formula

• developed originally for $n+p \rightarrow d$

Butler & Pearson and Schwarzschild & Zupancic, PR129 ('63); Sato & Yazaki, PLB98 ('81); Dover, Heinz, Schnedermann & Zimányi PRC44 ('91); Scheibl & Heinz, PRC59 ('99), ...

• basic equations: $qq \rightarrow meson$, $qqq \rightarrow baryon$

$$\frac{dN_M(\vec{p})}{d^3p} = g_M \int (\prod_{i=1,2} d^3 x_i d^3 p_i) W_M(x_1 - x_2, \vec{p_1} - \vec{p_2}) f_\alpha(\vec{p_1}, x_1) f_\beta(\vec{p_2}, x_2) \delta^3(\vec{p} - \vec{p_1} - \vec{p_2})$$

$$\frac{dN_B(\vec{p})}{d^3p} = g_B \int (\prod_{i=1,2,3} d^3 x_i d^3 p_i) W_B(x_{12}, x_{13}, \vec{p_{12}}, \vec{p_{13}}) f_\alpha(\vec{p_1}, x_1) f_\beta(\vec{p_2}, x_2) f_\gamma(\vec{p_3}, x_3) \delta^3(\vec{p} - \sum \vec{p_i}) f_\beta(\vec{p_3}, x_3) \delta^3(\vec{p} - \sum \vec{p_i}) f_\beta(\vec{p_1}, x_1) f_\beta(\vec{p_2}, x_2) f_\beta(\vec{p_3}, x_3) \delta^3(\vec{p} - \sum \vec{p_i}) f_\beta(\vec{p_3}, x_3) \delta^3(\vec{p} - \sum \vec{p_i}) f_\beta(\vec{p_3}, x_3) \delta^3(\vec{p} - \sum \vec{p_i}) f_\beta(\vec{p_1}, x_1) f_\beta(\vec{p_2}, x_2) f_\beta(\vec{p_3}, x_3) \delta^3(\vec{p} - \sum \vec{p_i}) f_\beta(\vec{p_1}, x_1) f_\beta(\vec{p_2}, x_2) f_\beta(\vec{p_3}, x_3) \delta^3(\vec{p} - \sum \vec{p_i}) f_\beta(\vec{p_1}, x_2) f_\beta(\vec{p_1}, x_3) \delta^3(\vec{p_1} - \sum \vec{p_i}) f_\beta(\vec{p_1}, x_3) \delta^3(\vec{p_1} - \sum \vec{p_i}) f_\beta(\vec{p_1}, x_3) f_\beta(\vec{p_1}, x_3) f_\beta(\vec{p_1}, x_3) \delta^3(\vec{p_1} - \sum \vec{p_1}) f_\beta(\vec{p_1}, x_3) f_\beta(\vec{p_1}, x_3) f_\beta(\vec{p_1}, x_3) \delta^3(\vec{p_1} - \sum \vec{p_1}) f_\beta(\vec{p_1}, x_3) f_$$

hadron yield space-time wave-fn. quark distributions

assumes: - weak binding

- no 2-body or 3-body correlations
- rare process otherwise violates unitarity
- **3D** hypersurface (e.g., equal time sudden approximation)

+ in studies so far, indep. fragmentation yield superimposed additively

Freezeout hypersurface?

transport freezeout is never "sharp"

D.M & Gyulassy ('00), ('02)

- diffuse 4-dimensional freezeout distribution in spacetime

contours for $1/N dN/rdr d\tilde{t}$ [fm⁻³]

Coal. formalism for diffuse freezeout

Gyulassy, Frankel & Remler: [NPA 402, 596 ('83)]

- for each constituent pair/triplet, propagate particles to the latest of freezeout times and evaluate weight $W(\Delta x, \Delta p)$ there
- reason (roughly): any interaction would break up a weak bound state
- note, relative distance changes(!), e.g., if $t_2 > t_1$:

$$weight = W_M \left(ec{x}_1(t_1) + (t_2 - t_1) ec{v}_1 - ec{x}_2(t_2), ec{p}_1 - ec{p}_2
ight)$$

Goal:

- study influence of freezeout dynamics in coalescence via applying the above formula to transport model freezout results
- naturally incorporates: "diffuse" 4D freezeout
 - space-time and space-momentum correlations
 - solution to unitarity problem

main question: how robust are features derived from the simple formulas?

Model ingredients

Processes: ideally: $-2 \rightarrow 2$ parton scatterings, showers $(1 \rightarrow 2, 1 \rightarrow 3)$, parton fusion $(2 \rightarrow 1, 3 \rightarrow 1)$, inelastic $n \rightarrow m$, parton recombination to hadrons, hadron breakup, ... etc.

here: - only 2 \rightarrow 2 (with $g, u, d, s, \bar{u}, \bar{d}, \bar{s}$, Debye-screened $d\sigma/dt \propto 1/(t-\mu^2)^2$)

- no parton showers until freezeout
- coalescence rate computed over freezeout 4D volume via Gy-F-R
- partons with no coalescence partner fragment as in vacuum

Coalescence part: - assume easy color neutralization - no color penalty factors

- but consider spin & flavor
- channels: π , K, η , η' ; ρ , K^* , ω , Φ ; p, n, Σ , Λ , Ξ ; Δ , Ω
- "spherical box" Wigner functions: $W_M = \Theta(p_M |\Delta p|)\Theta(x_M |\Delta x|)$ $W_B = \prod_{k \neq i, j} \Theta(p_B - |\Delta p_{ij}|)\Theta(x_B - |\Delta x_{ij}|)$
 - $x_M = x_B = 1 \text{ fm}$

- convert g to a random q (extreme case of $q - \bar{q}$ splitting)

- when several coalescence final states, unbiased random choice of one

Codes: - MPC 1.6.7 for parton transport

- JETSET 7.4.10 for fragmentation & decays ("out of box")

Numerical challenge

• parton subdivision

essential for (approximate) Lorentz covariance

• high statistics

coalescence integral needs good sampling in **6D(!)** phasespace

• combinatorics

triple loop when picking out baryon candidates

– current study corresponds to nearly 10 GHz \times week –

Initial conditions

- Au+Au at RHIC with b = 8 fm, i.e., 30% centrality
- $p_{\perp} > 2$ GeV: minijets(dijets) $p_{\perp} < 2$ GeV: smoothly joined-on soft component, such that $dN^{parton}/dy(b=0) = 2000$
- binary collision profile, formation time $au_0 = 0.1 \; {
 m fm}/c$

-
$$\sigma_{gg} = 3$$
 mb, 10 mb - $\sigma_{gq} = (4/9)\sigma_{gg}$, $\sigma_{qq} = (4/9)^2\sigma_{gg}$

Results – spectra

Gluon quenching during transport evolution

- factor of 5-10 quenching at large p_T for $\sigma_{gg} = 3 10$ mb
- due to incoherent, elastic energy loss or, in hydro language "cooling"

Hadron suppression, fragm. only

pions

protons

- direct consequence of gluon quenching, similar in magnitude for π & p

R_{AA} for coalescence + fragm.

pions

protons

- significant enhancement due to coalescence for $1.5 < p_T < 4$ GeV

Relative enhancement due to coalescence

hadron enhancement at intermed. p_T

parton depletion at low p_T

- $2 - 3 \times$ enhancement over pure fragmentation, at much higher p_T than depletion on parton level

but enhancement is not more for protons than pions
 latest FO time is larger for a triplet than for a double ⇒ baryons "see" lower density

Spacetime does matter

a crazy choice - try freezeout & coalescence on formation $\tau=0.1~{\rm fm}/c$ hypersurface

- this particular combination did enhance baryons over mesons...

Elliptic flow results

 $(\sigma_{gg}=10 \text{ mb}, b=8 \text{ fm})$

Parton elliptic flow vs p_{\perp}

generic behavior

current study ($\sigma_{gg} = 10 \text{ mb}, b = 8 \text{ fm}$)

D.M & Gyulassy, ('01)

Coalescence versus fragmentation

- competing effects in all "directions"

Elliptic flow - fragmentation alone

 $(\sigma_{gg}=10 \text{ mb, } b=8 \text{ fm})$

- both π and p flow are reduced, especially at low p_\perp
- due to jet width (" j_T random walk"), absent from collinear "D(z)" FFs

Elliptic flow from coalescence alone

primary π and p from coalescence ($\sigma_{gg} = 10 \text{ mb}, b = 8 \text{ fm}$)

- both π and p are below scaling curve, by 20-40%(!)
- some "mass effect" ($v_2^p < v_2^\pi$) generated at low p_\perp

v_2 from coalescence + fragm.

- flow amplification reduced
- baryon-meson splitting disappeared

Holy Grail: Angular correlations

unfortunately, not enough statistics yet

need $10 - 100 \times$ more (= several 100 - 1000 GHz \times week)

 \rightarrow a major undertaking

parton-parton angular correlations in AuAu initial condition, $|\eta| < 0.7$

- can indeed see a weak away-side dijet correlation

parton-parton angular correlations in AuAu <u>at freezeout</u>, $\sigma_{gg} = 10$ mb, $|\eta| < 0.7$

- is the away-side dijet still there??

Expectations regarding correlations

- coalescence "window" $1.5 < p_{\perp} < 4 \text{ GeV}$
 - this is where coalescence yield was dominant
- in coal. window, hadron correlations would reflect correlations on parton level

in this study, only two kinds: -	elliptic flow
-	dijet correlation (away-side)
in principle, many more, e.g.: -	- quark-antiquark corr. (e.g., from $g \rightarrow q\bar{q}$) - flavor corr. - color corr.

• Measurements of identified hadron correlations in the "coalescence window" would provide a way to i) study parton-parton correlations and ii) test consistency of coalescence models (or any other model).

Conclusions

• coalescence can dominate hadroproduction at intermediate $1.5 < p_{\perp} < 4$ GeV (provided color neutralizes easily)

• spacetime effects (x-p corr., "diffuse" freezeout) can have significant influence

basic features - elliptic flow scaling, enhanced B/M ratio - did no longer hold

- clearly further studies required:
 - higher statistics & independent confirmation
 - extension to other observables (esp. correlations) and centralities ($b \neq 8$ fm)
 - find out what it takes to preserve features of the simple coal. models