

Event anisotropy of identified π^0 , γ and ecompared to charged π , *K*, *p*, and d in $\sqrt{s_{NN}}$ =200 GeV Au+Au at PHENIX

Masashi Kaneta

for the PHENIX collaboration

Brazil <mark>China</mark>	University of São Paulo, São Paulo Academia Sinica, Taipei, Taiwan China Institute of Atomic Energy, B Peking University, Beijing		PH	EN	IX	3
France	LPC, University de Clermont-Ferrand, Clermont-Ferrand Dapnia, CEA Saclay, Gif-sur-Yvette IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, Orsay LLR, Ecòle Polytechnique, CNRS-IN2P3, Palaiseau SUBATECH, Ecòle des Mines at Nantes, Nantes					
Germany University of Münster, Münster						
Hungary Central Research Institute for Physics (KFKI), Budapest						
	Debrecen University, Debrecen					
	Eötvös Loránd University (ELTE), Budapest				V.P	$\frac{m}{2} g_{\mu\nu}^{\mu\nu}$
India	Banaras Hindu University, Banaras					ai Miriy
	Bhabha Atomic Research Centre, I	Bombay				
Israel	Weizmann Institute, Rehovot					
Japan	Center for Nuclear Study, University		о, гокуо			
	Hiroshima University, Higashi-Hiroshima KEK, Institute for High Energy Physics, Tsukuba					- NI
	Kyoto University, Kyoto 12 C				countrie	
	Nagasaki Institute of Applied Science, Nagasaki					
	RIKEN, Institute for Physical and Chemical Research, Wako					
	RIKEN-BNL Research Center, Upton, NY				USA	Abi
	Rikkyo University, Tokyo					Bro
	Tokyo Institute of Technology, Tokyo University of Tsukuba, Tsukuba					Uni
						Uni
	Waseda University, Tokyo					Col
S. Korea	Cyclotron Application Laboratory, KAERI, Seoul					Flo
	Kangnung National University, Kar	ngnung				Flo
	Korea University, Seoul					Geo
	Myong Ji University, Yongin City					Uni
	System Electronics Laboratory, Seoul Nat. University, Seoul					low
	Yonsei University, Seoul					Los
Russia	Institute of High Energy Physics, Protovino					Law
	Joint Institute for Nuclear Research, Dubna					Uni
	Kurchatov Institute, Moscow PNPL St. Petersburg Nuclear Physics Institute, St. Petersburg					Nev
	PNPI, St. Petersburg Nuclear Physics Institute, St. Petersburg St. Petersburg State Technical University, St. Petersburg					Dep
Swodon	Lund University, Lund					Dep Oal
Sweden	Luna oniversity, Luna	*as of	January	/ 2004		Uni

12 Countries; 58 Institutions; 480 Participants*

lene Christian University, Abilene, TX ookhaven National Laboratory, Upton, NY versity of California - Riverside, Riverside, CA versity of Colorado, Boulder, CO umbia University, Nevis Laboratories, Irvington, NY rida State University, Tallahassee, FL rida Technical University, Melbourne, FL orgia State University, Atlanta, GA versity of Illinois Urbana Champaign, Urbana-Champaign, IL a State University and Ames Laboratory, Ames, IA Alamos National Laboratory, Los Alamos, NM vrence Livermore National Laboratory, Livermore, Ca versity of New Mexico, Albuquerque, NM w Mexico State University, Las Cruces, NM ot. of Chemistry, Stony Brook Univ., Stony Brook, NY ot. Phys. and Astronomy, Stony Brook Univ., Stony Brook, NY k Ridge National Laboratory, Oak Ridge, TN versity of Tennessee, Knoxville, TN Vanderbilt University, Nashville, TN

Announcement

- The flow and event anisotropy from the PHENIX collaborators in the poster session
 - Shingo Sakai^{*}
 - Azimuthal anisotropy of electrons/positrons in 200 GeV Au+Au collisions at RHIC-PHENIX
 - Andrey Kazantsev^{*}
 - Elliptic flow of inclusive photons in Au+Au collisions at $\sqrt{s_{_{NN}}}$ =200 GeV from the PHENIX experiment at RHIC
 - Hiroshi Masui*
 - Measurement of directed flow in $\sqrt{s_{NN}}$ =200 GeV Au+Au, d+Au, p+p collisions at RHIC-PHENIX
 - Akio Kiyomichi
 - Radial flow study from identified hadron spectra in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}{=}200$ GeV (at PHENIX)
 - Michael Issah^{*}
 - Azimuthal anisotropy measurements in PHENIX via cummulants of Multiparticle azimuthal correlations
 - Debsankar Mukhopadhyay
 - Elliptic flow of ϕ mesons in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV (at PHENIX)
 - ShinIchi Esumi

金田雅司

Analysis of event anisotropy and azimuthal pair correlation

* Students

Motivation

ೆಂಕ್ರಿ ಎಕ್ರಿ ಎಕ್ರಿ ಎಕ್ರಿ ಎಕ್ರಿ ಎಕ್ರಿ ಎಕ್ರಿ ಎಕ್ರಿ <mark>ಕ್ರಿ ಎಕ್ರಿ ಎಕ್ರಿ ಎಕ್ರಿ ಎಕ್ರಿ ಎಕ್ರಿ ಎಕ್ರಿ ಎಕ್ರಿ ಎಕ್ರಿ ಎಕ್ರಿ ಎಕ್ರಿ</mark> ಎಕ್ರಿ ಎಕ್

• Event anisotropy

- Sensitive to the initial state
 - Collectivity of hadron/parton \rightarrow thermalization / recombination
 - Energy loss by Jet quenching \rightarrow dense matter
- π⁰

Quark Matter 2004

- Large p_T coverage as an identified hadron
- Large contribution of the decay to the following inclusive measurements
- Photon
 - Radiation / Compton from hot gas
 - Photon flow?
- Electron/positron
 - Open charm and bottom
 - Flow and energy loss of heavy flavors?

The PHENIX experiment at RHIC

PHENIX Detector

Central Magnet

BBO

MVD

TEC

PC1

PbSc

RICH

PbSc

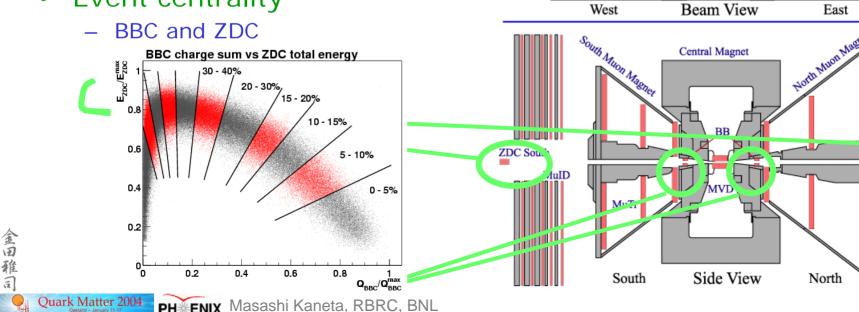
PbG1

PbGl

TOF

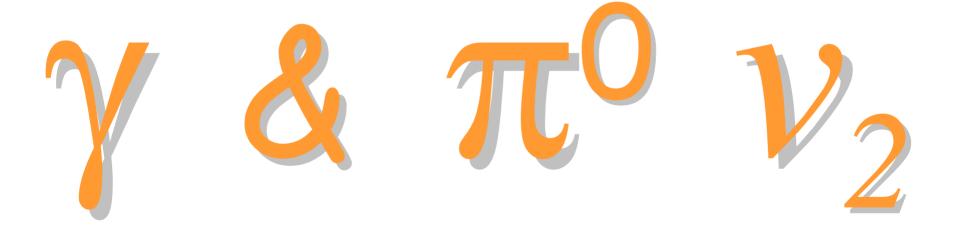
PC3

PC2


PbSc

PbSc

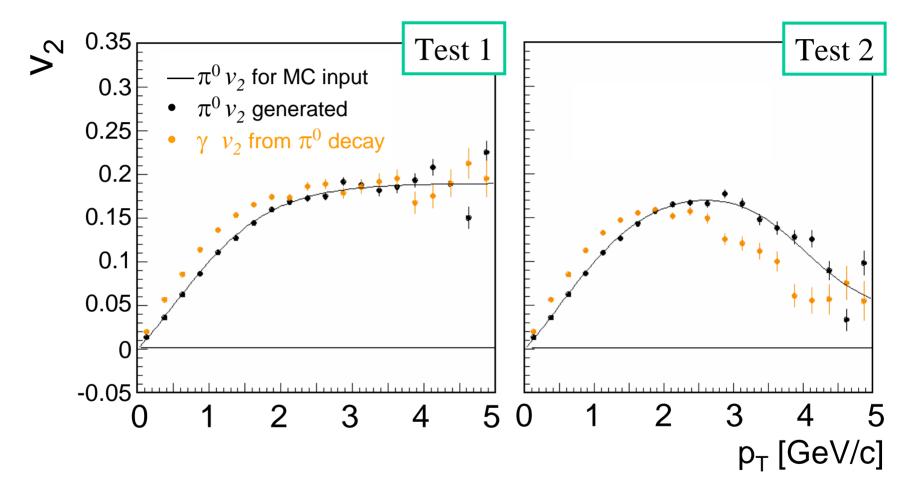
RICH


PC1

- Photons/ π^0
 - Tracking : vertex be BBC to EMC hit positions
 - PID : EMCal
- Electrons
 - Tracking
 - DC, PC hits, vertex by BBC
 - PID
 - RICH (*p*_{*T*}<4.9 GeV/*c*)
 - Energy/momentum cut by EMCal
- Event centrality

ZDC Non

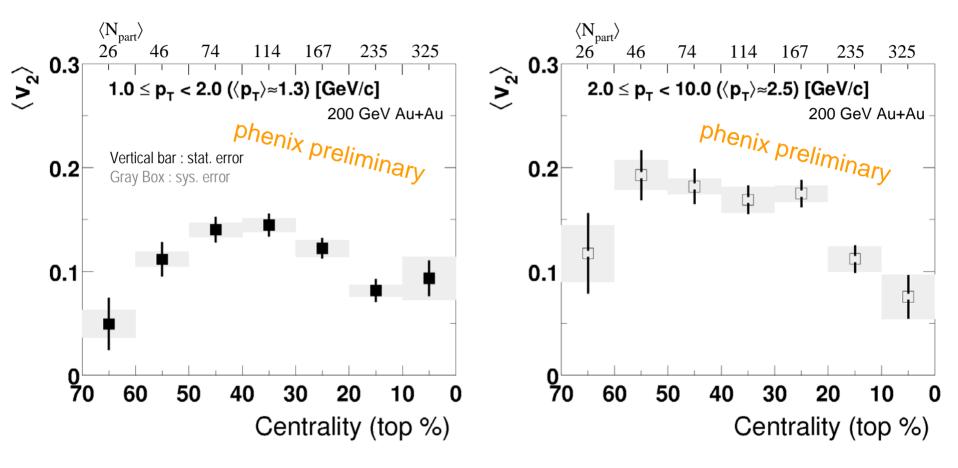
MuID


Inclusive photon v_2 and $\pi^o v_2$ in 200 GeV Au+Au

Note: vertical bar : stat. error Inclusive photon = including all of the decay effect from hadrons curves, gray box : sys. error 0.35 40-60%, 200 GeV Au+Au top 20%, 200 GeV Au+Au 20-40%, 200 GeV Au+Au 0.3 Phenix Preliminary Phenix Preliminary Phenix Preliminary • γ • γ 0.25 π⁰ π⁰ π⁰ 0.2 0.15 0.1 0.05 0 -0.05 -0.1 2 3 5 6 0 n 0 Δ p_T [GeV/c]

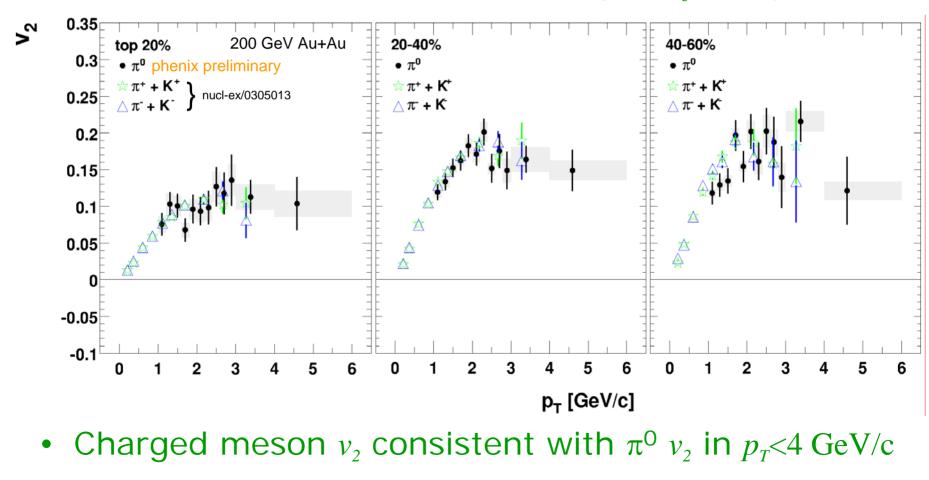
- Inclusive photon v_2 shows similar tendency with π^0
 - Need more statistics to see photon v_2 after π^0 (and also $\eta)$ decay effect subtraction

^2


π^0 decay effect for photon v_2 (MC)

• Tool is ready for the decay effect in photons

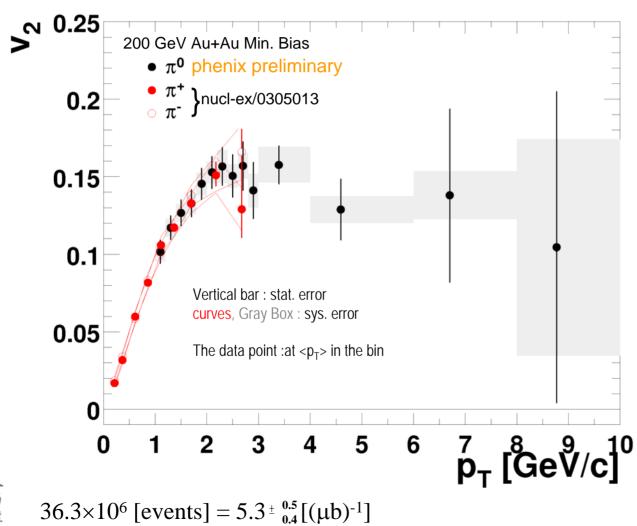
<v₂> vs. centrality from 200GeV Au+Au


Quark Matter 2004 PH ENIX Masashi Kaneta, RBRC, BNL

v_2 vs. p_T vs. centrality from 200GeV Au+Au

೫*ಥ%ದರ್*ಗದ%೫ದ%೫ದ%೫ದ%೫ದ%<mark>೫</mark> ದರ್ಗದ%**ಿದ**%೫ದ%೫ದ%೫ದ%೫ದ%೫ದ%೫ದ%೫ದ%

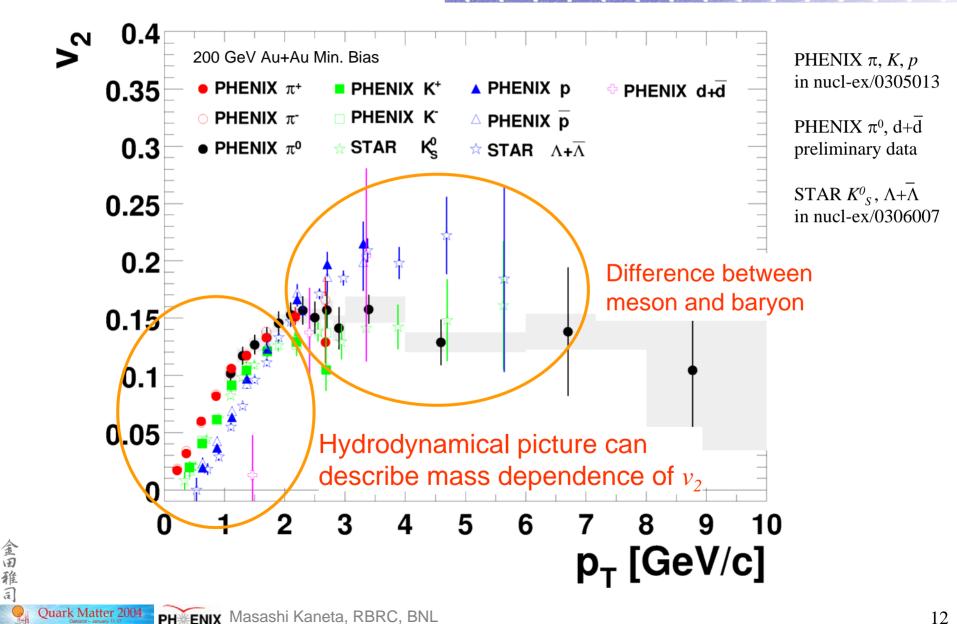
Statistical error is shown by error bar Systematic error from π^0 count method and reaction plane determination is shown by horizontal bar The data point stays at $< p_T >$ in the bin and horizontal bar shows the bin range


The charged π and $K v_2$ are shown only with statistical errors

v_2 vs. p_T (Minimum Bias) from 200GeV Au+Au

෦෨෧෭෨෧෭෨෧෫෨෧෭෨෧෫෨෨෫෨෧෫෨෨෨෨෨ඁ෧ඁ෧ඁ෪ඁ෪ඁ෨ඁ෧෪෯෨෧෯෨෧෯෨෧෯෨෧෯෨෧෯෨෧෯෨ ෦෨෧෭෨෧෫෨෧෭෨෧෫෨෧෭෨෧෭෨෧෭෨෨෨෨෨෨෨෯෧෭෯ඁ෦ඁ෧෧෯෨෧෯෨෧෯෨෧෯෨෧෯෨෧෯෨

• Identified particle v_2 up to $p_T = 10 \text{ GeV}/c$

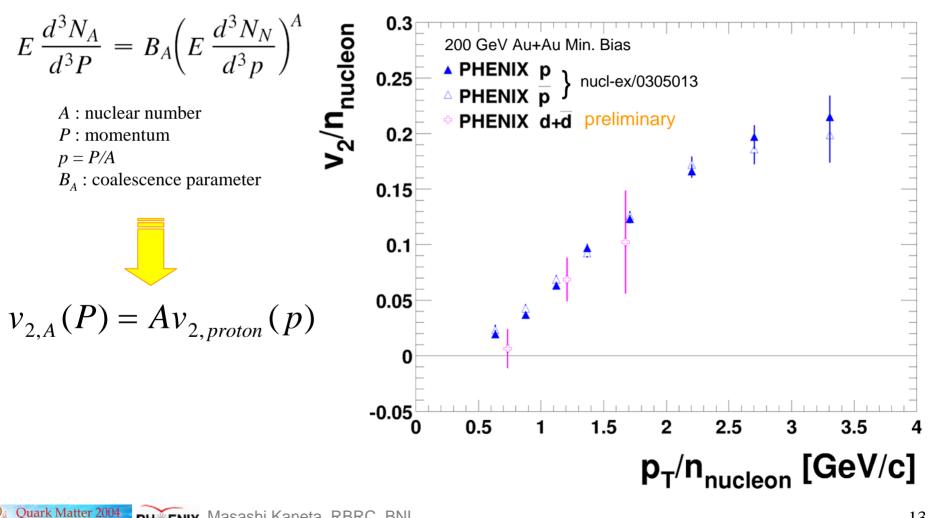


Consistent with charged pions

Also

- Similar *p*_{*T*} dependence with <u>charged hadron *v*₂</u>
- Low p_T : consistent with <u>hydrodynamical</u> <u>calculation</u>
- High p_T: interesting to compare to a jet quenching calculation/ <u>fragmentation-</u> recombination model

v_2 : identified hadrons at mid-rapidity

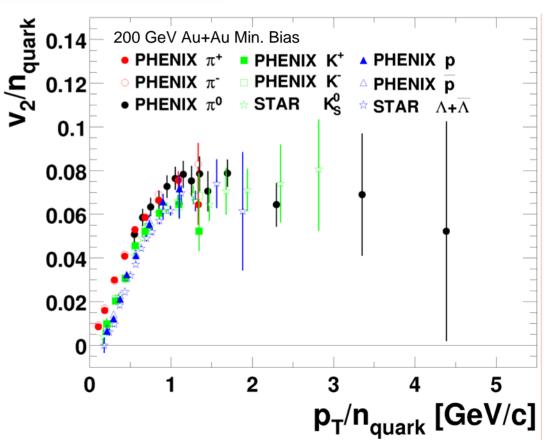


Coalescence picture

204204204204204204

It is established for the nuclei cross section

Korkkorkkorkkorkkor


Quark coalescence?

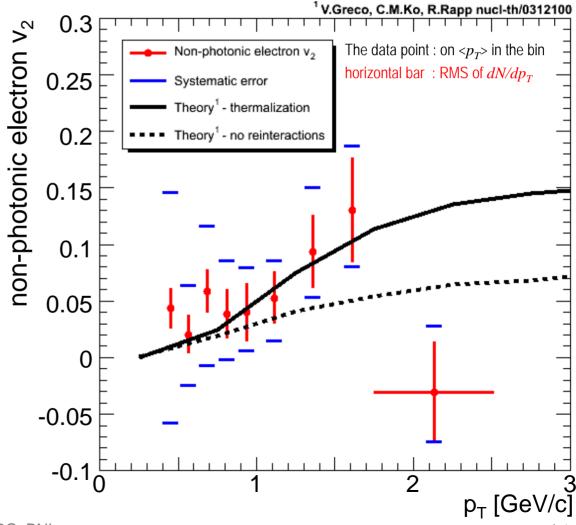
೫೮೯೫೮೯೫೮೯೫೮೯೫೮೯೫೮೯೫೮೯೫೮೯೫೪೮೯೫೪೮೯೫೪೮೫೫೮೫೫೮೫೫೮೫೫೮೫೫೮೫೫೮೫೫೮೫೫೮೫೫

- Phys. Rev. Lett. 91 (2003) 092301, D. Molnar and S.A. Voloshin
- qq→meson, qqq(qqq)→Baryon

$$v_{2,M}(p_{\perp}) \approx 2v_{2,q}\left(\frac{p_{\perp}}{2}\right), \qquad v_{2,B}(p_{\perp}) \approx 3v_{2,q}\left(\frac{p_{\perp}}{3}\right)$$

- What data looks like?
- Non-strange and strange mesons and baryons seem to be merged around p_T/n_{quark} ≈1-3 GeV/c
- But we need more statistics to conclude it

 $e^+ v_2$


Non-photonic $e^{\pm}v_2$

Non-photonic electron (sorry for jargon) means

- Measured electron minus background:
 - hadron decay
 - γ conversion
- that is, charmed

(+bottomed) electron we think

- Two scenarios in nucl-th/0312100
 - thermalized charm + transverse flow
 - no re-interaction
- Data is consistent with both scenarios

Non-photonic $e^{\pm}v_2$ -Have a look of the poster for detail discussion • [-Shingo Sakai Azimuthal Anisotropy of electrons/positrons in 200 GeV Au+Au Collisions at RHIC-PHENIX –Takashi Hachiya Single Electrons From Semi-leptonic Decays of Heavy Flavor in Au+Au S. Lininini Collisions at √s_{NN}=200 GeV 金田雅司

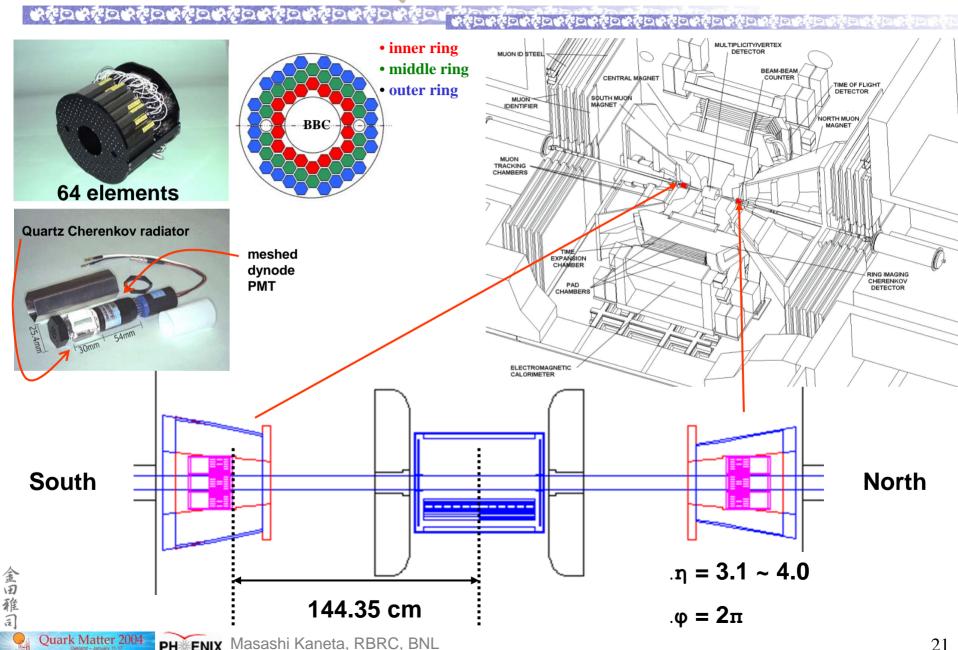
17

- First measurement of π^0 , γ , $e^{\pm} v_2$ at RHIC
- $\pi^0 v_2$
 - Minimum bias data (p_T =1-10 GeV/c)
 - v_2 at the highest p_T from the identified particle analysis
 - Non-zero $\pi^0 v_2$ up to $p_T \sim 8 \text{ GeV}/c$
 - Charged πv_2 consistent with $\pi^0 v_2$ in $p_T = 1-3 \text{ GeV}/c$
 - Quark coalescence picture seems to work
 - from combining various hadron v_2 's at RHIC
- γv_2
 - Centrality (top 20, 20-40, 40-60%) and p_T dependence (in $p_T < 5 \text{ GeV/c}$) are consistent wit π^0
 - With more statistics from run4, we hope to reject the decay effect
- $e^{\pm} v_2$

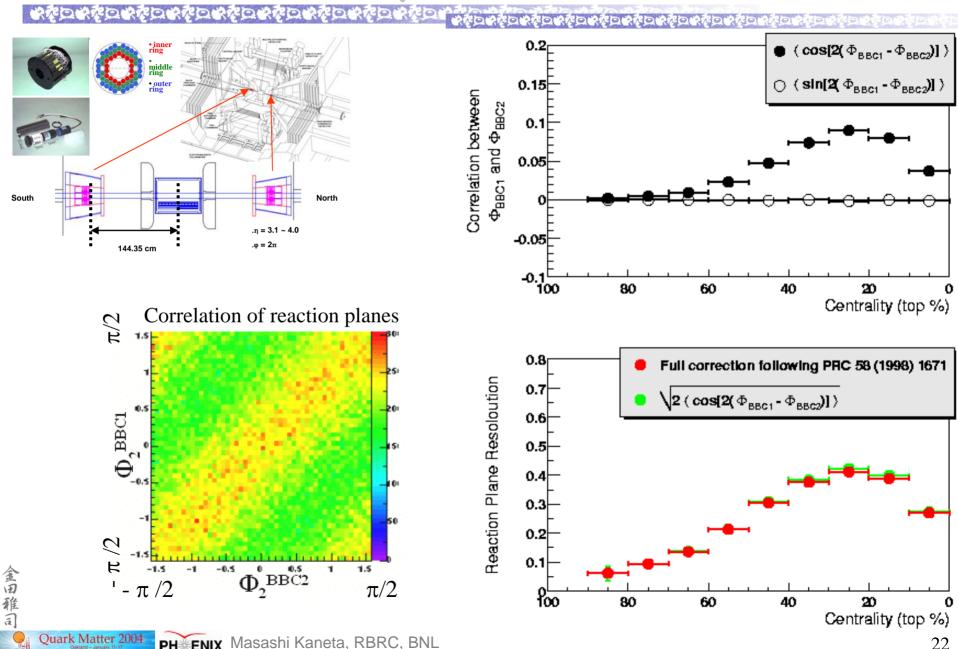
- Minimum bias data ($p_T = 0.4-3.0 \text{ GeV}/c$)
- Non-photonic $e v_2$ is consistent with both model
 - charm flow and no-charm flow
- We need much more statistics to conclude

Method of π^0 and Photon v_2 Measurement

 $E\frac{dN^{3}}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T} dp_{T} dy} \left(1 + \sum_{n=1}^{\infty} 2 \frac{v_{n}^{measured}}{\sqrt{n}} \cos[n(\phi - \Phi_{r})]\right) \text{ where } n = 1, 2, 3, \dots$ event anisotropy parameter measured reaction plane angle azimuthal angle of the particle

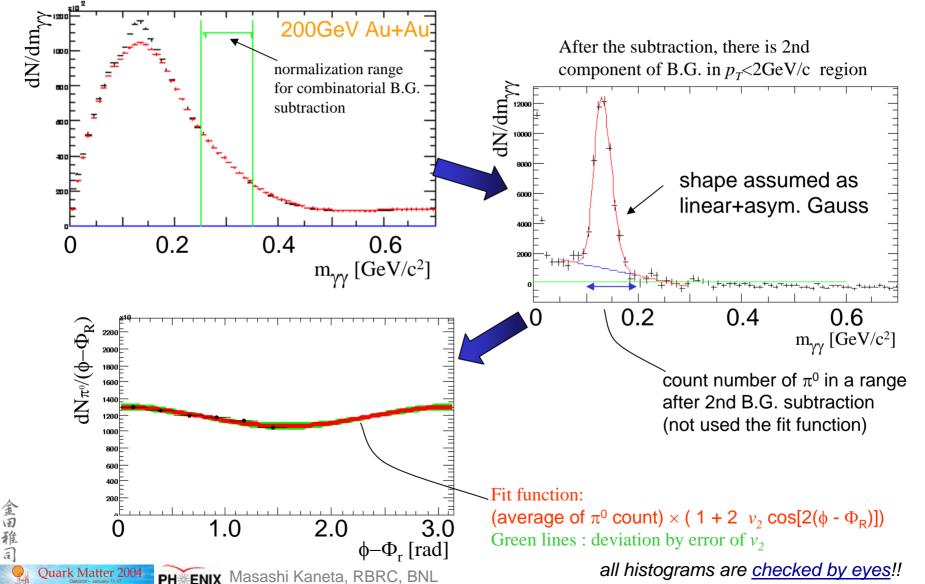

 $v_n^{\text{real}} = v_n^{\text{measured}/}$ (reaction plane resolution)_n

Note: the detail of reaction plane definition will be found in **nucl-ex/0305013**


- Define reaction plane by charged multiplicity on Beam-Beam Counters
- Photons
 - Obtained the second harmonic coefficient v_2 from $\langle \cos[2(\phi \Phi_r)] \rangle$
- π⁰

- π^0 reconstruction and background subtract (combinatorial and the others)
 - For each $p_{T'}$ azimuthal angle, centrality
- Combine both information
 - Counting number of π^0 as a function of ϕ - Φ_r and fit by the formula
- Electrons
 - Both methods are used

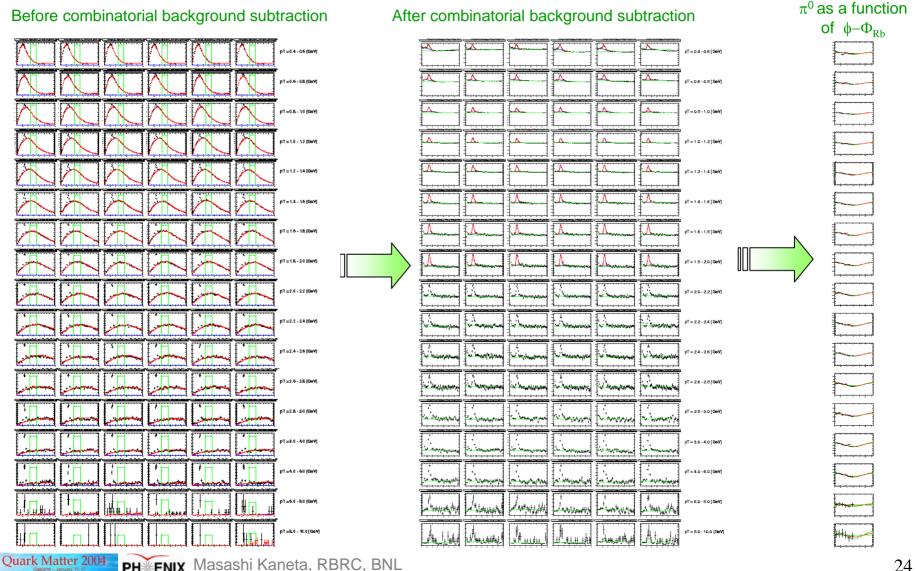
Reaction plane definition


Reaction plane definition

Example plots from the $\pi^0 \nu_2$ analysis procedures

ಕೆ ಕಾರ್ಣಕ್ಷೆ ಮನೆಗೆ ಮನ

Invariant mass of $\gamma\gamma$ from same event and mixed event (classed by reaction plane, centrality, vertex position)

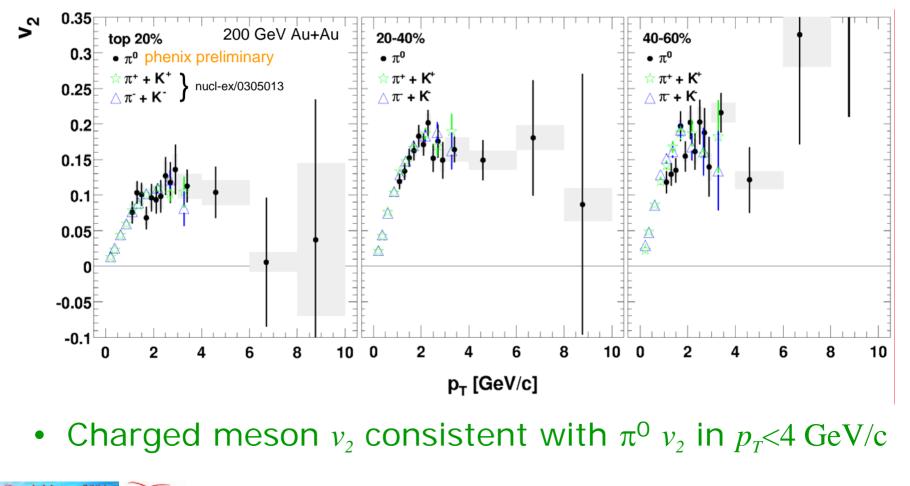

23

Tooooooooooo many histograms checked

Example of invariant mass distributions for each p_T , ϕ - Φ_R in a centrality bin

金田雅司

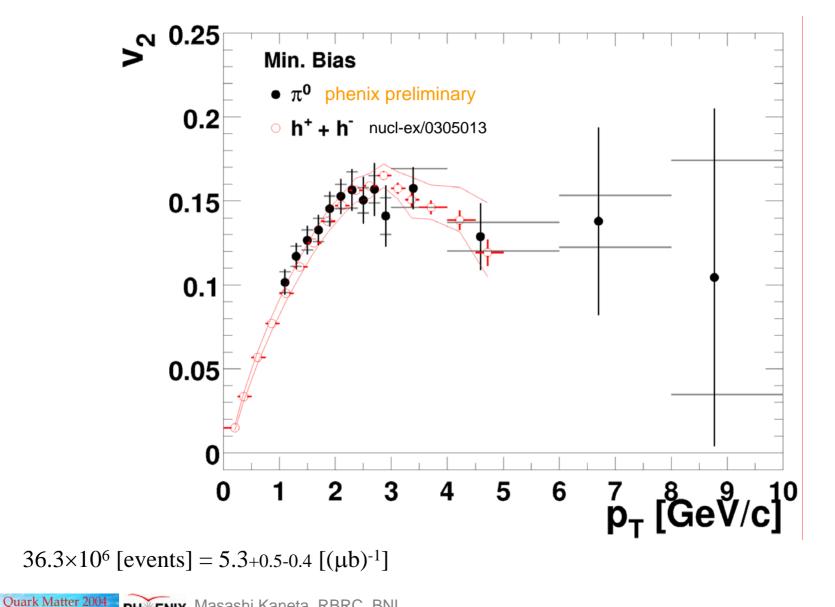
0

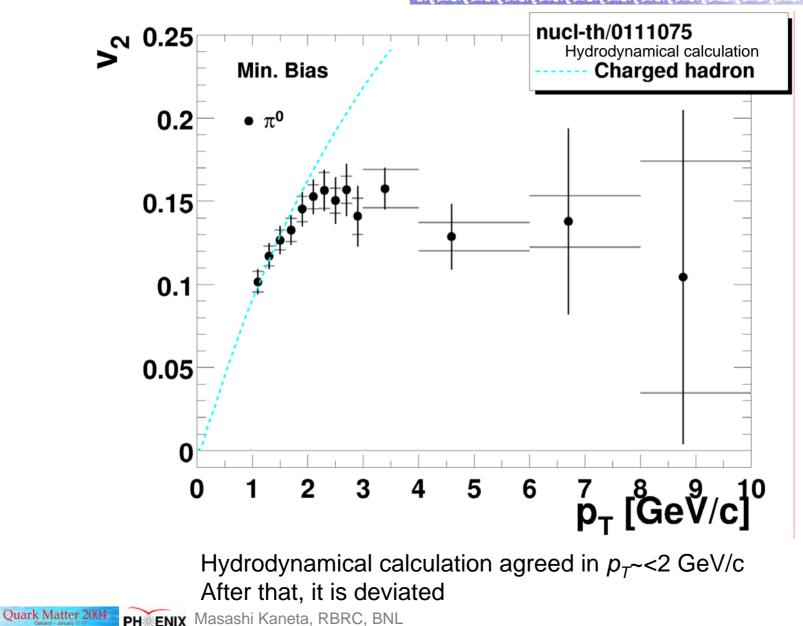


v_2 vs. p_T vs. centrality from 200GeV Au+Au

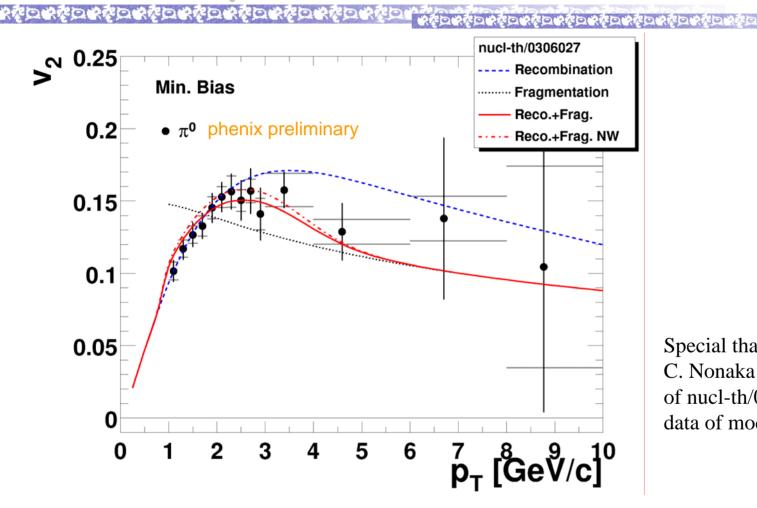
Statistical error is shown by error bar Systematic error from π^0 count method and reaction plane determination is shown by horizontal bar

The data point stays at $< p_7 >$ in the bin and horizontal bar shows the bin range


The charged π and $K v_2$ are shown only with statistical errors

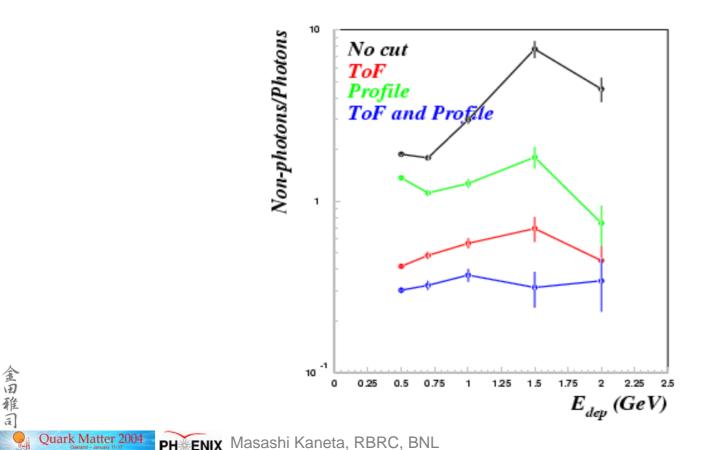

Quark Matter 2004 PH ENIX Masashi Kaneta, RBRC, BNL

v_2 vs. p_T (Minimum Bias) from 200GeV Au+Au

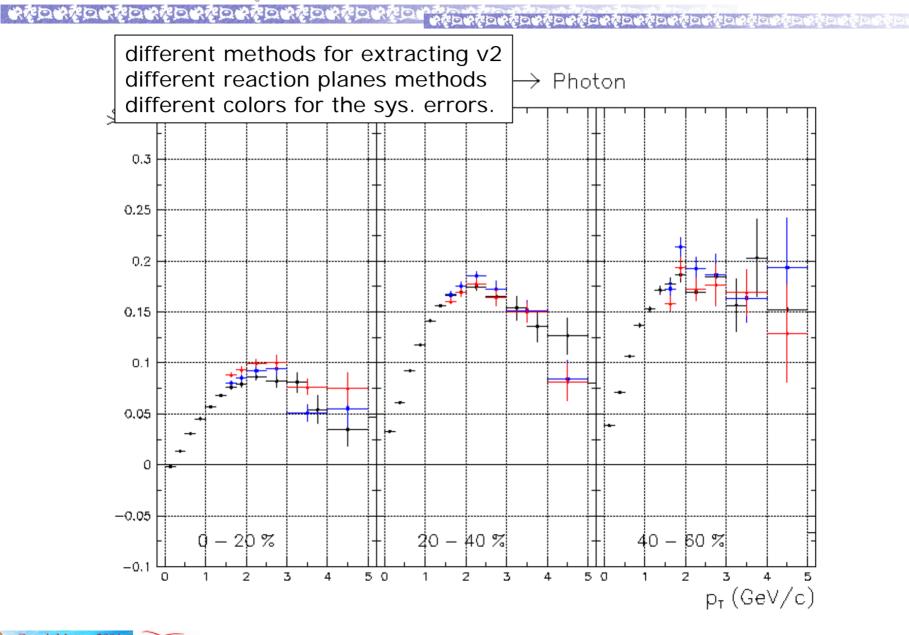

D*D***D***D***D***D***D***D**

Comparison with a model

Comparison with a model

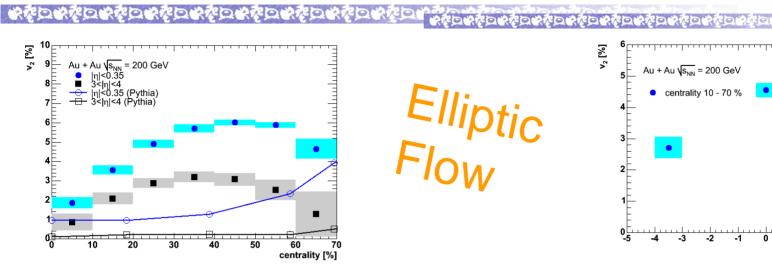

Special thanks to C. Nonaka (one of authors) of nucl-th/0306027 for data of model calculation

Comparison with a model which is described in nucl-th/0306027. Here we don't want to discuss which model can describe the data. To conclude which model can describe the data, we need much more statistics in high p_{τ} region.

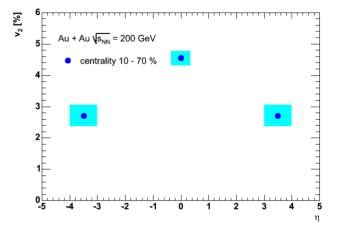

Photon purity with cuts

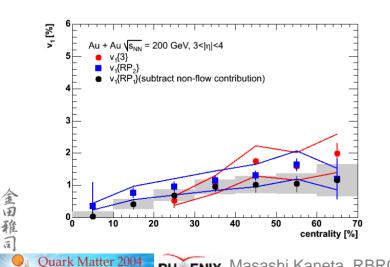
DNP99, October 1999

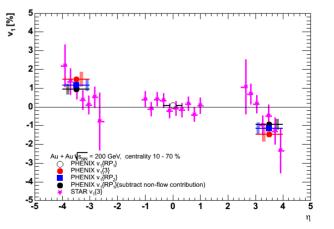
Central HIJING Events: ToF and Shower Profile cut performance


Systematic errors

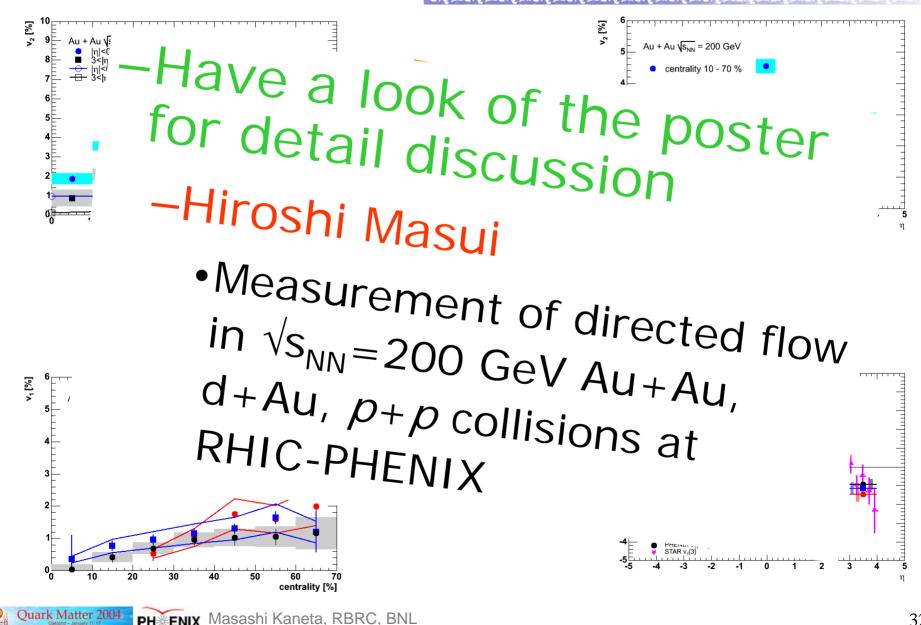
金田雅司


0


New results of charged hadron v_n


AND AND AND AND

Elliptic Flow



PH FNIX Masashi Kaneta, RBRC, BNL

New results of charged hadron v_n

a shake shake

金田

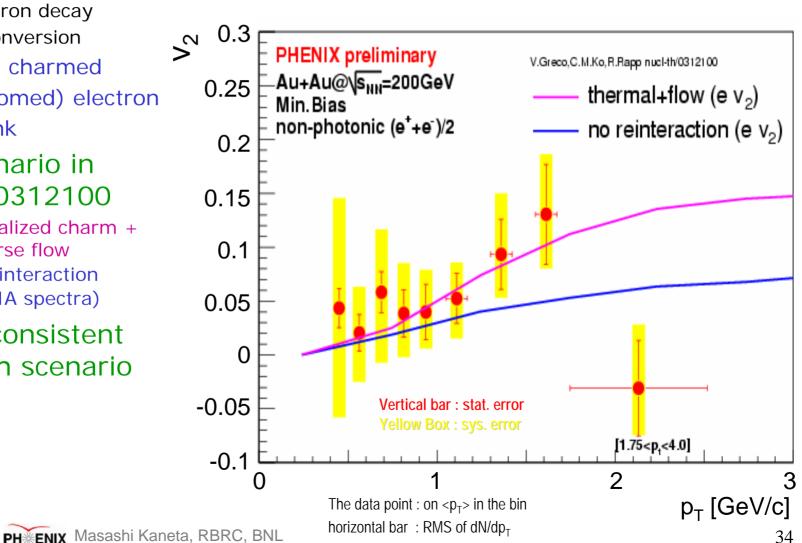
利言

Particle identifications

- Requirement for photon
 - Dead and noisy EMC towers are removed for the analysis
 - PID cuts: χ^2 <3 for photon probability to shower shape
 - |TOF| cut to reject hadron
 - No charged track hit within cluster isolation window
- For π^0
 - Photon ID, plus
 - Asymmetry cut: $|E_1 E_2| / (E_1 + E_2) < 0.8$
 - Combinatorial background is estimated by event mixing
 - Classes categorized for event mixing
 - Centrality : every 10%
 - BBC Z Vertex : every 10cm in \pm 30cm
 - Reaction plane direction in PHENIX detector : 24 bins in $\pm\pi$
- Electrons

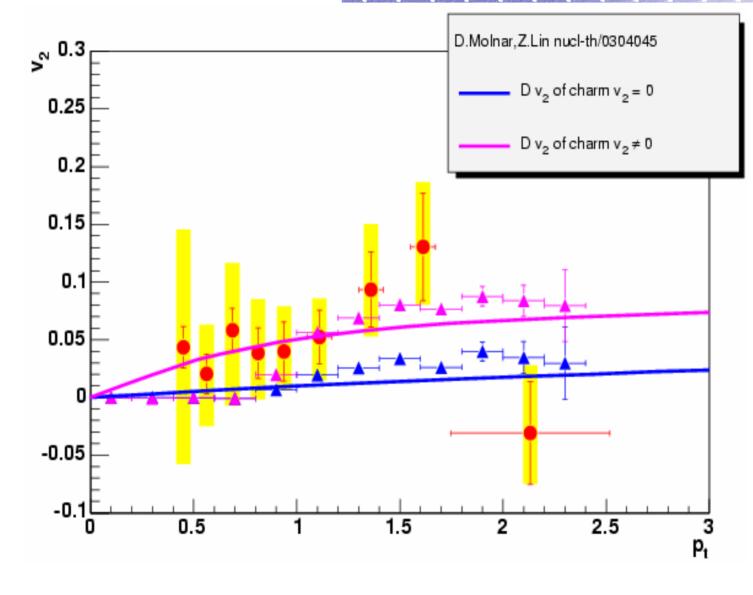
Non-photonic $e^{\pm i}$

Non-photonic electron (sorry for jargon) means


- Measured electron minus background:
 - hadron decay
 - γ conversion
- that is, charmed

(+bottomed) electron we think

- Two scenario in nucl-th/0312100
 - (1) thermalized charm + transverse flow (2) no re-interaction (PHYTHIA spectra)
- Data is consistent with both scenario


金田雅司

Quark Matter 2004

Charmed electron v₂

金田雅司

P

Quark Matter 2004

Future plan of event anisotropy analysis in PHENIX

- Trying v_2 for all of possible particles with large statistics
 - Already tried
 - charged π ,K,p, deuteron, π^0 , e⁺⁽⁻⁾ (inclusive), gamma (inclusive)
 - On going but need much more statistics
 - eta
 - direct gamma
 - inclusive gamma [contribution from π^0 , eta (dominantly)]
 - charm and bottom meson
 - inclusive $e^{+(-)}$ [contribution from π^0 and eta dalitz decay (dominantly)]
 - Seems to be hard work, but...
 - K⁰_s

- Lambda
- resonances
- penta-quark
- v₁ on SMD (stay around beam rapidity)
 - Correlation method for v_n
- Cross section and HBT radii in-plane and out-plane