Electromagnetic signature of jets

Outline

- Conditions for jet-quenching should lead to jet-plasma interaction as source of EM radiation.
- Real photon production: jet-photon conversion by the plasma.
- Lepton pairs: large invariant mass pairs produced by jetplasma interaction.
- Simple estimates of source-strengths.
- Dilepton jet-tagging: a case study.

RHIC:Spectacular "jet-quenching"!

$$R_{AA}(p_T) = \frac{d^2 N^{A+A} / dp_T d\eta}{\langle N_{coll} \rangle (d^2 \sigma^{pp} / d\eta) / \sigma^{p+p}_{inelastic}}$$

- This is a totally new phenomenon: all previous nucleus-nucleus measurements see enhancement, not suppression.
- Qualitatively new physics

Jet-quenching

Any help from electromagnetic radiation?

• Photons and dileptons are penetrating probes $\alpha_s \approx 0.2$

 $\alpha_{em} \approx 0.007$

- New physics: collective, many-body effects
 - Quark-gluon plasma: "traditional" thermal radiation
 - In-medium modifications
 - Modified spectral densities
 - Chiral symmetry restoration
 - Mixing effects
 - Pion dispersion relation

Jet-Plasma interaction

The plasma mediates a jet-photon conversion

Jet-plasma interactions: EM signatures

• Real photons from quark-antiquark annihilation

• Small t and u dominate the phase space, leading to $p_{\gamma} \approx p_q$ and $p_{\gamma} \approx p_{\overline{q}}$

$$E_{\gamma} \frac{d\sigma}{d^3 p_{\gamma}} \approx \sigma(s) \frac{1}{2} \left[\delta^3 (p_{\gamma} - p_q) + \delta^3 (p_{\gamma} - p_{\overline{q}}) \right]$$

The process can be visualized at q $(\bar{q}) \rightarrow \gamma$

Photon yield from the jet-plasma interaction:

$$E_{\gamma} \frac{dN^{(A)}}{d^{4}xd^{3}p_{\gamma}} = \frac{16E_{\gamma}}{2(2\pi)^{6}} \sum_{q=1}^{N_{f}} f_{q}(\boldsymbol{p}_{\gamma})$$
$$\times \int d^{3}p f_{\bar{q}}(p) [1 + f_{g}(p)] \sigma^{(A)}(s) \frac{\sqrt{s(s - 4m^{2})}}{2E_{\gamma}E} + (q \leftrightarrow \bar{q})$$

$$E_{\gamma} \frac{dN^{(C)}}{d^4 x d^3 p_{\gamma}} = \frac{16E_{\gamma}}{2(2\pi)^6} \sum_{q=1}^{N_f} f_q(p_{\gamma})$$

$$\times \int d^3 p f_g(p) [1 - f_q(p)] \sigma^{(C)}(s) \frac{s - m^2}{2E_{\gamma}E} + (q \leftrightarrow \overline{q})$$

Jet characteristics are calculable SPS 102 Jets for Pb+Pb at S^{1/2}=A×17.4 GeV Pb+Pb at $8^{1/2} = A \times 17.4 \text{ GeV}$ Gloops 10¹ Onaries 10 Antiemark dN / d^{P1} dy [GeV³] $p_T = 2 GeV$ 10^{-1} dN / d²p_T dy [GeV^{*}] 10^{-2}

10 10⁻⁴ 10⁻⁵ 10 10⁻⁷ 10⁻⁸

10

10⁻¹⁰ 10⁻¹¹

-2.0 -1.5 -1.0 -0.5

0<u>.0</u>

0.5

10-7

10-8

10-9

Churana

Operla

Antiomarke

2

3

4

 $\mathbf{p_{T}}\left[GeV\right]$

5

6

o

Quark Matter 2004

4 GeV

1.5

1.0

2.0

Quark Matter 2004

Charles Gale McGill

Photon sources

• Hard direct photons

pQCD calculation including shadowing

• EM bremsstrahlung

pQCD calculation including shadowing

• Thermal photons from hot medium

Quark Matter 2004

• Jet-photon conversion

Results (photons)

Charles Gale McGill

Results (photons)

•LHC

Fries, Mueller & Srivastava, PRL 90, 132301 (2003)

How does this compare with "traditional" predictions?

- No contradiction: complementary (also true for dileptons)
- Still a small window for thermal plasma radiation
- Initial pQCD component will be measured in pp reactions *at the same energies!*
- Similar conclusions for the LHC

Turbide, Gale & Rapp, PRC (2004)

Directly related to the in-medium vector spectral densities

Same spectral densities:Low mass dileptons and real photons

S. Turbide, R. Rapp, and C. Gale, PRC (2004)

Charles Gale McGill

Dilepton sources

• Drell-Yan dileptons

pQCD calculation including shadowing

• Thermal dileptons

• Jet-virtual photon conversion

Lepton pairs from jet-plasma interactions

$$f(p) = f_{th}(p) + f_{jet}(p)$$

$$f_{th}(p) = \exp(-E/T) \qquad f_{jet}(p) = \frac{1}{g} \frac{(2\pi)^3}{\pi R_{\perp}^2 \tau p_T \cosh y} \frac{dN_{pQCD}}{d^2 p_T dy}$$

$$\times \delta(\eta - y)\theta(\tau - \tau_i)\theta(\tau_{max} - \tau)\theta(R_{\perp} - r)$$

Rates for $ab \rightarrow \ell^+ \ell^-$ are calculable in relativistic kinetic theory

$$R = \int \frac{d^3 p_a}{(2\pi)^3} f_a(p_a) \int \frac{d^3 p_b}{(2\pi)^3} f_b(p_b) \sigma(M^2) v_{\text{re}}$$

Dynamical ingredients

Bjorken model				
	$\tau_0(\mathrm{fm/c})$	T ₀ (GeV)	$\lambda_g^{(i)}$	$\lambda_q^{(i)}$
SPS	0.20	0.345	1.0	1.0
	0.50	0.254	1.0	1.0
RHIC	0.15	0.447	1.0	1.0
	0.50	0.297	1.0	1.0
LHC	0.073	0.897	1.0	1.0
Self-screened parton cascade				
RHIC	0.25	0.67	0.34	0.064
LHC	0.25	1.02	0.43	0.082

Different initial conditions are explored

Results I (dileptons)

Quark Matter 2004

Charles Gale McGill

Results I (dileptons)

Results II

2004

After solving the relevant master equations (Biro, van Doorn, Thoma, Mueller, Wang (PRC (1993))

Quark Matter 2004

McGill

Results II

Jet-plasma interactions: measurable EM signatures!

- RHIC:
 - Jet-plasma interaction is the dominant source of photons up to $p_T \sim 6 \text{ GeV}$.
 - Large-mass dilepton yield larger than thermal emission, competes with Drell-Yan, which will be measured.
- LHC:
 - Direct photon signal is still important

Quark Matter 2004

- Large mass lepton pairs dominate over Drell-Yan emission.

Dilepton-tagged jets: inclusive mass spectrum

Is there a window?

Summary & Conclusion

- There are measurable electromagnetic signatures of jetplasma interaction.
- Those constitute complementary observables that would signal the existence of conditions suitable for jet-quenching to take place.
 - To do:
 - Work out and incorporate the systematics of jet energy loss.
- Dilepton jet-tagging is feasible.

Collaborators:

•T. C. Awes, Oak Ridge National Laboratory
•Rainer Fries, University of Minnesota
•R. Rapp, Texas A&M
•Dinesh Srivastava, Variable Energy Cyclotron Centre
•Simon Turbide, McGill University

