

Non-identical particle correlations in 130 and 200 AGeV collisions at STAR

Adam Kisiel Warsaw University of Technology

for the STAR experiment

Adam Kisiel

Outline

- Physics motivation
 - Emission asymmetry measurement
 - Measuring flow as space-momentum correlations
 - Determining interaction potentials
- Current results
 - 130 AGeV data
 - 200 AGeV data

- Flow in models
 - Blast-wave parameterization
 - RQMD transport model
- Exotic correlation functions
 - Proton-Lambda and antiproton-Lambda
 - Pion-Cascade

The asymmetry analysis

Flow in the transverse plane

- Flow produces emission asymmetries in space Δr
- Observed asymmetry r* can come from emission time difference Δt too

 $\langle r^* \rangle = \gamma (\langle \Delta r \rangle - \beta_T \langle \Delta t \rangle)$

• We expect asymmetry in "out" direction, but not in "side", due to symmetry

> R. Lednicky, nucl-th/0305027

Data sample

- Central AuAu collisions
 - 130 AGeV 0.7 Mevents
 - 200 AGeV 2.2 Mevents
- Identification probability from dE/dx in STAR TPC
 - Purity cuts on particle level

- Midrapidity data |y| < 0.5
- Momentum range [GeV/c]
 - Pions (0.13, 0.5)
 - Kaons (0.3, 1.0)
 - Protons (0.4, 1.2)
- Detector corrections
 - Two-track effects:
 - elimination of pairs possibly sharing hits in the TPC
 - Particle purity
 - PID probability (all), estimation of contamination from weak decay (pions, protons)
 - Momentum resolution

5

Pion-Proton 130 AGeV

- Good agreement for identical and opposite charge combinations
- We observe Lambda peaks at k*~decay momentum of Λ

Sigma:
$$15.1 \pm 0.4^{+1.0 \text{ syst.}}_{-1.5 \text{ syst.}}$$
 fm
Mean: $-7.4 \pm 0.9^{+1.9 \text{ syst.}}_{-3.4 \text{ syst.}}$ fm

Fit assumes source is a gaussian in r_{out}^*

Pion-Kaon at 200 AGeV

- Good agreement for same-charge combinations
- Clear emission asymmetry signal
- Systematic error under study – influenced by purity and fits to all CFs separately

Sigma: $17.3 \pm 0.8^{+0.9 \text{ syst.}}_{-1.6 \text{ syst.}}$ fm Mean: $-7.0 \pm 1.2^{+6.1 \text{ syst.}}_{-4.0 \text{ syst.}}$ fm

Pion – Proton at 200 AGeV

- Good agreement for same-charge combination pairs
- Double ratios influenced by e⁺e⁻
- Systematic error under study

Sigma:
$$14.8 \pm 0.5^{+4.0 \text{ syst.}}_{-3.0 \text{ syst.}}$$
 fm
Mean: $-6.0 \pm 1.5^{+3.0 \text{ syst.}}_{-5.5 \text{ syst.}}$ fm

8

Kaon-Proton at 200 AGeV

- Only like-sign data well described by theory and fitted
- Surprising correlation shape for unlike-sign – a question to theorists
- Mean shift opposite to pi-K and pi-p

Sigma:
$$10.6 \pm 0.6^{+1.4 \text{ syst.}}_{-2.1 \text{ syst.}}$$
 fm
Mean: $0.7 \pm 1.5^{+1.6 \text{ syst.}}_{-0.6 \text{ syst.}}$ fm

Quark Matter '04, Oakland, CA

9

Modeling the emission asymmetry

- Are we measuring time shifts, space shifts (flow) or both?
- Is the flow hypothesis consistent with the data?
- How do we compare theory and experiment?

- Need models producing strong transverse radial flow:
 - Blast-wave hydrolike flow
 - RQMD flow through interactions

Comparing models to data

- We do see spacemomentum correlations:
 - Data and blastwave consistent
 - RQMD needs flow to reproduce data
- Time difference can explain K-p
- Correct comparison Temperature
 same fitting for RQMD and data
 Flow intensity System radius
 Evolution time

Quark Matter '04, Oakland, CA

11

Proton – Lambda at 200 AGeV

- Confirm measurements from NA49 and E895.
- Fit using analytical model of proton-lambda correlation: $R_{inv} = 2.8 \pm 0.3 (+1.0 - 1.4) fm$

(see poster HBT9 by S. Bekele)

- Interaction potential parameters from: F. Wang, S. Pratt, Phys. Rev. Lett. 83 (1999) 3138-3141
- Main challenge is particle purity, feed-down from from Lambda-Lambda accounted for
- Good agreement between proton-lambda and antiproton anti-lambda correlation functions

Anti-Proton Lambda at 200 AGeV

- First time measurement of anti-proton lambda CF
- Fit with the same analytical model as $p\Lambda$ – interaction potentials extracted from fit $R_{inv} = 1.5 \pm 0.07 (+0.5 - 0.9) fm$
- Early drop of correlation function signals significant annihilation
- A new way to extract unknown interaction potential parameters

Pion – Xi at 200 AGeV

- Also a first time measurement
- Will enable to address the question of Ξ flow
- Theoretical expectation with assumptions:
 - Source size as for pions
 - Significant Ξ flow
 - Coulomb + strong interaction
 - Gives input onto crosssections similar to proton-lambda case

Calculation using S.Pratt's code Combined π^+ - Ξ^- and π^- - Ξ^+ Purity assumed = 50%±25% No momentum resolution correction

Summary and outlook

- Measured correlations for πK , πp and Kp pairs at 130 and 200AGeV AuAu collisions
 - Clear asymmetry of emission observed for all pairs
 - Space-momentum correlations from transverse radial flows present a consistent description of emission asymmetries for all systems
 - Emission time differences found to be important, but not enough to explain the data
- New way to measure system interactions: pA, anti-pA, Kp (unlike sign), $\pi \Xi$
- New, non-HBT size estimation method for pA, anti-pA
- $\pi \Xi$ function promises new information in future Adam Kisiel

Extra slides

Pion-Kaon at 130 AGeV

- Correlation functions consistent for same and opposite charge
- Clear asymmetry signature
- Side and Long "double ratio" flat as expected

Sigma: $12.5 \pm 0.4^{+2.2}_{-3}$ fm Mean: $-5.6 \pm 0.4^{+1.9}_{-1.3}$ fm

1D relativistic view What can be probed?

Function of $\gamma_{pair}(\beta_{pair})$ which depend on the pair acceptance

Double ratio definitions

Purity correction

 π - K correlation functions (1.02 (*) (*) Average pair purity = **0.75** 0.98 π - K correlation functions (1.25 () () () 0.96 0.94 π⁺ K⁺ data 1.2 0.92 $\pi^* K^*$ purity correct 숯 π K data 0.9 1.15 π K purity correcte \$ 0.88 π⁺ K⁻ data 1.1 0.86 $\pi^* \mathbf{K}$ purity corrected — π⁻ K⁺ data 0.05 0.1 0.15 0.2 O 1.05 $\pi^{-}K^{+}$ purity corrected $C_{measured} - (1 - P) * 1.0$ C_{correcte} 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 2k* [GeV/c]

Momentum resolution

What to expect from double ratios

 Initial separation in Pair Rest Frame (measured) can come from time shift and/or space shift in Source Frame (what we want to obtain)

$$\langle \Delta x^* \rangle = \gamma (\langle \Delta x \rangle + v_T \langle \Delta t \rangle) \langle x \rangle \equiv \langle \vec{r} \cdot \hat{x} \rangle \approx \langle r \frac{\beta^F + \beta^T_{\perp} \cos(\phi)}{\beta_{\perp}} \rangle \approx \langle r \frac{\beta^F}{\beta_{\perp}} \rangle \langle y \rangle = \langle \vec{r} \cdot \hat{y} \rangle = \langle r \frac{\beta^T_{\perp} \sin(\phi)}{\beta_{\perp}} \rangle = 0 \langle z \rangle = \langle \tau_s \sinh(y_s) \rangle \approx \langle \sinh(y_s) \rangle \langle \tau_s \rangle = 0$$

 We are directly sensitive to time shift, the space shift arises from radial flow – possibility of a new radial flow measurement

Fitting procedure

- No analytic form of correlation function
- Need to generate correlation functions using experimental momentum distributions, Monte-Carlo methods and Lednicky's pair weights
- Best fit parameters are taken at the minimum χ^{2} value

Successes of the blast wave parameterization

Fitting and quantitative comparisons

nucl-ex/0307025

- Fits assume gaussian source in PRF
- r*_{out} distributions
 have non-gaussian
 tails
- Use the same fitting procedure for models and data - correlation functions constructed with "Lednicky's weights"

Hit sharing cut effect on Side ratio

Proton-Lambda raw CF

- Proton-lambda and anti-proton – antilambda in good agreement
- Both show positive correlation