Interferometry of direct photons in Pb+Pb collisions at 158 AGeV

> D. Peressounko for WA98 collaboration.

Experimental setup

Two-photon correlation function.

D. Peressounko for WA98 collaboration

Possible sources of distortion of correlation function

- Apparatus effects (cluster splitting and merging)
- Hadron misidentification
- Photon conversion
- Photon background correlations:
 - Bose-Einstein correlations of parent π^0 ;
 - Collective (elliptic) flow;
 - Residual correlations due to decays of resonances;

Hadrons and photon conversion

Photon background correlations

Invariant correlation radius

 $C_2(Q_{inv}) = 1 + \lambda/(4\pi) \int d\mathbf{o} \exp\{-Q_{inv}^2 (R_s^2 \sin^2\theta \sin^2\phi + R_l^2 \sin^2\theta \cos^2\phi)\}$

- $(Q_{inv}^2 + 4K_T^2)\cos^2\theta R_o^2$

(for massless particles!)

 $R_{inv} = f(R_s, R_l)$

$$\lambda_{inv} = \lambda \frac{\text{Erf}(2K_TR_o)}{2K_TR_o}$$

Pion correlation radii: M.M. Aggarwal, et al., (WA98collbration), Phys. Rev. C67 (2003) 014906.

Yield of direct photons

$$N_{\gamma}^{dir} = N_{\gamma}^{total} \sqrt{2\lambda}$$

$$\lambda_{\rm inv} = \lambda \, \frac{\rm Erf(2K_TR_o)}{2K_TR_o}$$

Predictions: S. Turbide, R. Rapp, and C. Gale, hep-ph/0308085.

Conclusions

- Direct photon correlations were measured for the first time in ultrarelativistic heavy ion collisions.
- We measured photon invariant correlation radius R_{inv} for two K_T bins, 100<K_T<200 MeV and 200<K_T<300 MeV. In both cases R_{inv} was very close to the pion correlation radii.
- Using invariant correlation strength parameter λ_{inv} we extracted *lower limit* on direct photon yield. Even this lower limit is considerably larger than existing theoretical predictions.

WA98 collaboration

M.M.Aggarwal,¹ Z.Ahammed,² A.L.S.Angelis,³ V.Antonenko,⁴ V.Arefiev,⁵ V.Astakhov,⁵ V.Avdeitchikov,⁵T.C.Awes,⁶ P.V.K.S.Baba,⁷ S.K.Badyal,⁷ S.Bathe,⁸ B.Batiounia,⁵ T.Bernier,⁹ K.B.Bhalla,¹⁰ V.S.Bhatia,¹ C. Blume,⁸ D.Bucher,⁸ H.B.usching,⁸ L.Carlen,¹¹ S.Chattopadhyay,² M.P.Decowski,¹² H.Delagrange,⁹ P.Donni,³ M.R.Dutta Majumdar,² K.El Chenawi,¹¹ A.K.Dubey,¹³ K.Enosawa,¹⁴ S.Fokin,⁴ V.Frolov,⁵ M.S.Ganti,² S.Garpman,¹¹ O.Gavrishchuk,⁵ F.J.M.Geurts,¹⁵ T.K.Ghosh,¹⁶ R.Glasow,⁸B.Guskov,⁵ H.A.Gustafsson,¹¹ H.H.Gutbrod,¹⁷ I.Hrivnacova,¹⁸ M.Ippolitov,⁴ H.Kalechofsky,³ K.Karadjev,⁴ K.Karpio,¹⁹ B.W.Kolb,¹⁷ I.Kosarev,⁵ I.Koutcheryaev,⁴ A.Kugler,¹⁸ P.Kulinich,¹² M.Kurata,¹⁴ A.Lebedev,⁴H.Lohner,¹⁶ L. Luquin,⁹D.P.Mahapatra,¹³V.Manko,⁴ M.Martin,³ G.Martinez,⁹ A.Maximov,⁵ Y.Miake,¹⁴ G.C.Mishra,¹³ B.Mohanty,¹³ M.-J.Mora,⁹ D.Morrison,²⁰ T.Moukhanova,⁴ D.S.Mukhopadhyay,² H.Naef,³ B.K.Nandi,¹³ S.K.Nayak,⁷T.K.Nayak,² A.Nianine,⁴ V.Nikitine,⁵ S.Nikolaev,⁴ P.Nilsson,¹¹ S.Nishimura,¹⁴ P.Nomokonov,⁵ J.Nystrand,¹¹ A.Oskarsson,¹¹ I.Otterlund,¹¹ T.Peitzmann,¹⁵ D.Peressounko,⁴ V.Petracek,¹⁸ S.C.Phatak,¹³ W.Pinganaud,⁹ F.Plasil,⁶ M.L.Purschke,¹⁷ J.Rak,¹⁸ R.Raniwala,¹⁰ S.Raniwala,¹⁰ N.K.Rao,⁷ F.Retiere,⁹ K.Reygers,⁸ G.Roland,¹² L.Rosselet,³ I.Roufanov,⁵ C.Roy,⁹ J.M.Rubio,³ S.S.Sambyal,⁷ R.Santo,⁸ S.Sato,¹⁴ H. Schlagheck,⁸ H.-R.Schmidt,¹⁷ Y.Schutz,⁹ G.Shabratova,⁵ T.H.Shah,⁷ I.Sibiriak,⁴ T.Siemiarczuk,¹⁹ D.Silvermyr,¹¹ B.C.Sinha,² N.Slavine,⁵ K.Soderstrom,¹¹ G.Sood,¹ S.P.Sorensen,²⁰ P.Stankus,⁶ G.Stefanek,¹⁹ P.Steinberg,¹² E.Stenlund,¹¹ M.Sumbera,¹⁸ T.Svensson,¹¹ A.Tsvetkov,⁴ L.Tykarski,¹⁹ E.C.v.d.Pijll,¹⁵ N.v.Eijndhoven,¹⁵ G.J.v.Nieuwenhuizen,¹² A.Vinogradov,⁴ Y.P.Viyogi,² A.Vodopianov,⁵ S.Voros,³ B.Wyslouch,¹² and G.R.Young⁶

¹ University of Panjab, ³ University of Geneva	² Variable Energy Cyclotron Centre ⁴ RRC "Kurchatov Institute"
⁵ Joint Institute for Nuclear Research, Dubna	⁶ Oak Ridge National Laboratory
⁷ University of Jammu	⁸ University of Munster
⁹ SUBATECH	¹⁰ University of Rajasthan
¹¹ University of Lund	¹² MIT
¹³ Institute of Physics, Bhubaneswar	¹⁴ University of Tsukuba
¹⁵ Universiteit Utrecht/NIKHEF	¹⁶ KVI, University of Groningen
¹⁷ Gesellschaft fur Schwerionenforschung (GSI)	¹⁸ Nuclear Physics Institute, Rez
¹⁹ Institute for Nuclear Studies, Warsaw	²⁰ University of Tennessee

