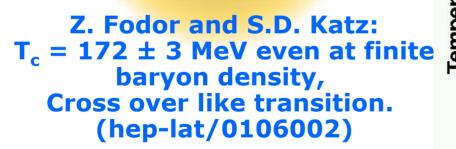
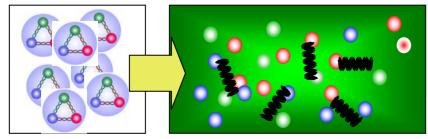
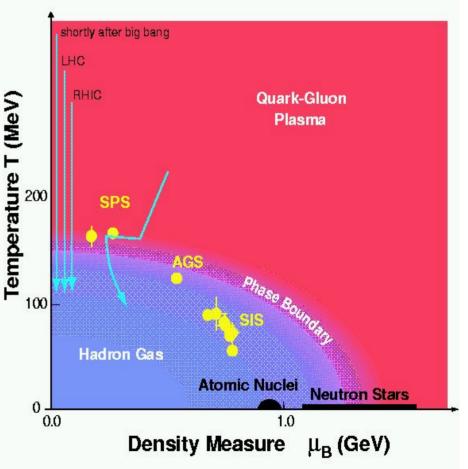
Indication for deconfinement at RHIC Buda-Lund hydro fits to spectra and HBT radii

M. Csanád, T. Csörgő, B. Lörstad and A. Ster

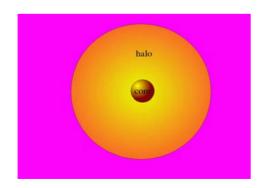

(Budapest & Lund)

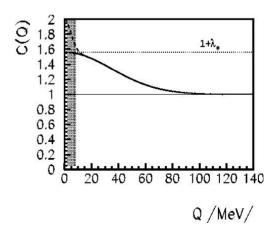

- Buda-Lund hydro model
- Buda-Lund fits to final RHIC Au+Au data
- A resolution of the "RHIC HBT puzzle"
 - Indication for a hot center, $T > T_c$
 - Confirmation by independent measurement
 - Prediction for new observables


Phases of QCD Matter

Quark Gluon Plasma

- "Ionize" nucleons with heat
- "Compress" them with density
- New state of matter





Principles for Buda-Lund hydro model

- Analytic expressions for all the observables
- 3d expansion, local thermal equilibrium, symmetry
- Goes back to known hydro solutions in nonrel limit
- Separation of the Core and the Halo
 - Core: hydrodynamic evolution
 - Halo: decay products of long-lived resonances

The general form of the emission function:

$$S_c(x,p)d^4x = \frac{g}{(2\pi)^3} \frac{p^{\mu}d^4\Sigma_{\mu}(x)}{\exp\left(\frac{p^{\nu}u_{\nu}(x)}{T(x)} - \frac{\mu(x)}{T(x)}\right) + s_q}$$

Calculation of observables with core-halo correction:

$$N_1(p) = \frac{1}{\sqrt{\lambda_*}} \int d^4 x S_c(p, x)$$
$$C(Q, p) = 1 + \left| \frac{\tilde{S}(Q, p)}{\tilde{S}(0, p)} \right|^2 = 1 + \lambda_* \left| \frac{\tilde{S}_c(Q, p)}{\tilde{S}_c(0, p)} \right|^2$$

Assuming special shapes for the flux, temperature, chemical potential and flow:

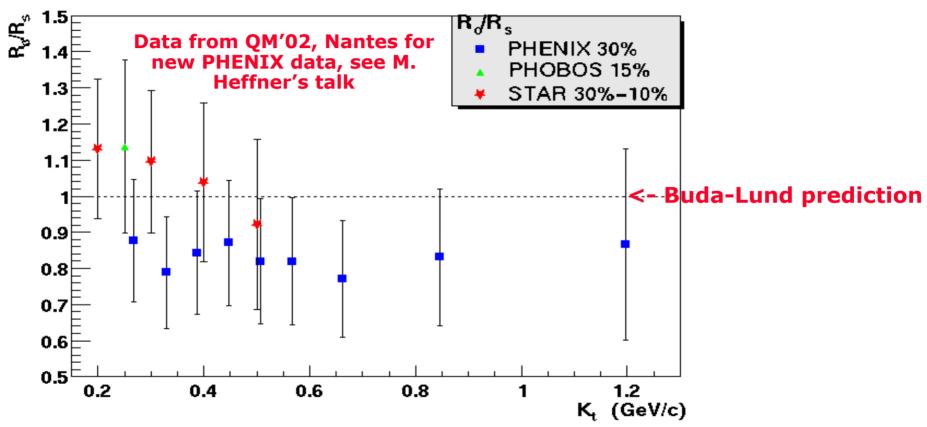
Invariant single particle spectrum:

$$N_1 = \frac{d^2n}{2\pi m_t dm_t dy} = \frac{g}{(2\pi)^3} \overline{E} \,\overline{V} \,\overline{C} \,\frac{1}{\exp\left(\frac{p^\mu u_\mu(x_s) - \mu(x_s)}{T(x_s)}\right) + s_q}$$

Invariant Buda-Lund correlation function: oscillating, non-Gaussian prefactor!

$$C_2(k_1, k_2) = 1 + \lambda_* \Omega(Q_{||}) \exp\left(-Q_{||}^2 R_{||}^2 - Q_{\pm}^2 R_{\pm}^2 - Q_{\perp}^2 R_{\pm}^2\right)$$

Non-invariant Bertsch-Pratt parameterization, Gaussian approximation:


$$C_2(k_1, k_2) = 1 + \lambda_* \exp\left(-Q_o^2 R_o^2 - Q_s^2 R_s^2 - Q_l^2 R_l^2 - 2Q_{os}^2 R_o R_s\right)$$

Non-Gaussian BL form — Gaussian BP approximation:

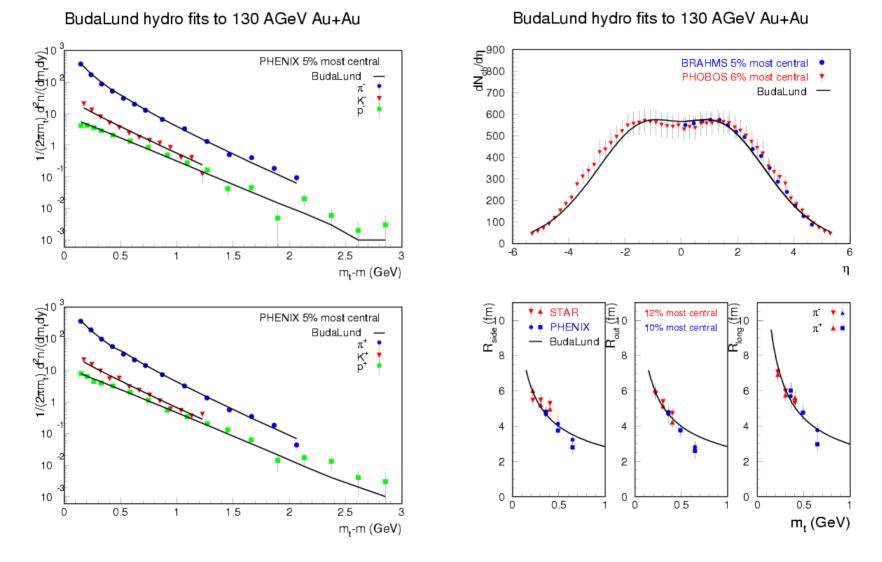
$$R_{||,\Omega}^2 = R_{||}^2 \left(1 + \frac{\overline{\Delta \eta}^2}{\overline{\eta}}\right)$$

Rout/Rside ratios at 200 GeV

R₀/R_{side}, AuAu 200 GeV, Central

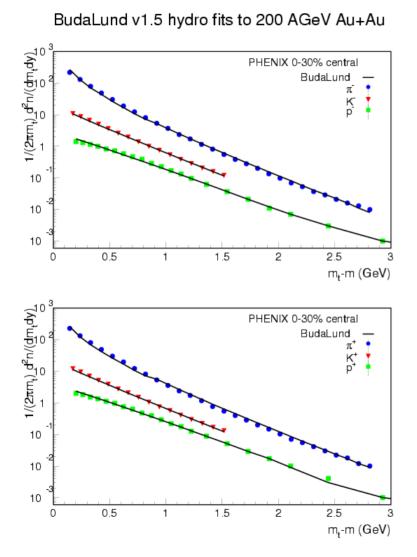
 This reflects symmetry of the flow! (T. Csörgő & B. Lörstad, PRC54(1996)1390, NPA590(1995)465)

• Note also: R_{side}/R_{long} -> const (~1) as m_t >>T₀ is another BL prediction

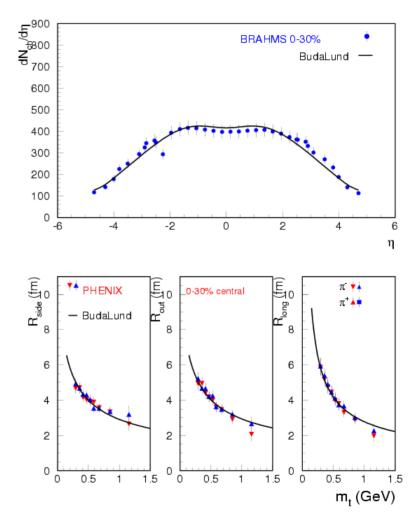

Predicted by a dynamical model with supercooling, hep-ph/940636

Calculation program packages:

- Version 1.0: Calculation of IMD & Radii, linearized saddle-point equations (NA22, NA44, NA49, prel. RHIC run-1)
- Version 1.4:Calculation for dN/Δη addedVersion 1.5:Saddle point found exactly in direction η
http://www.kfki.hu/~csorgo/budalund/
- **Version 2.0: Exact analytic calculation (in progress)**


All versions: Analytic expressions for all observables and simultaneous fits to all the observables

BudaLund fits, 130 GeV RHIC data



nucl-th/0311102, nucl-th/0207016

BudaLund fits, 200 GeV RHIC data

BudaLund v1.5 fits to 200 AGeV Au+Au

Comparing RHIC Au+Au to SPS results

BL v1.5 parameters	RHIC 200 GeV Au+Au	RHIC 130 GeV Au+Au	Pb+Pb SPS	h+p SPS
T ₀ [MeV]	200 ± 9	214 ±7	139 ± 6	140 ± 3
<ut><ut></ut></ut>	1.5 ± 0.1	1.0 ± 0.1	0.55 ± 0.06	0.20 ± 0.07
R₅ [fm]	11.6 ± 1	8.6 ± 0.4	7.1 ± 0.2	0.88 ± 0.13
T _{surf} [MeV]	0.5 T ₀ fixed	0.5 T ₀ fixed	131 ± 8	82 ± 7
τ ₀ [fm/c]	5.7 ± 0.2	6.0 ± 0.2	5.9 ± 0.6	1.4 ± 0.1
∆τ [fm/c]	1.9 ± 0.5	0.3 ± 1.2	1.6 ± 1.5	1.3 ± 0.3
Δη	3.1 ± 0.05	2.3 ± 0.4	2.1 ± 0.4	1.36 ± 0.02
T _{evap} [MeV]	127 ± 13	102 ± 11	87 ± 24	-
	-2 ± 14	63 ± 11		
μ ₀ ^{K+} [MeV]	16 ± 19	98 ± 19		
μ₀ ^{p-} [MeV]	97 ± 28	315 ± 27		
μ _B [MeV]	61 ± 39	77 ± 38		
	- 126/208=0.61	158/180=0.9		
CL	- 100 %	88 %		

A 5 σ effect, T₀ > T_c T₀ (RHIC) > T₀ (SPS) Indication for quarks & hard EOS $\mu_{B} = 77 \pm 38 \text{ MeV}$

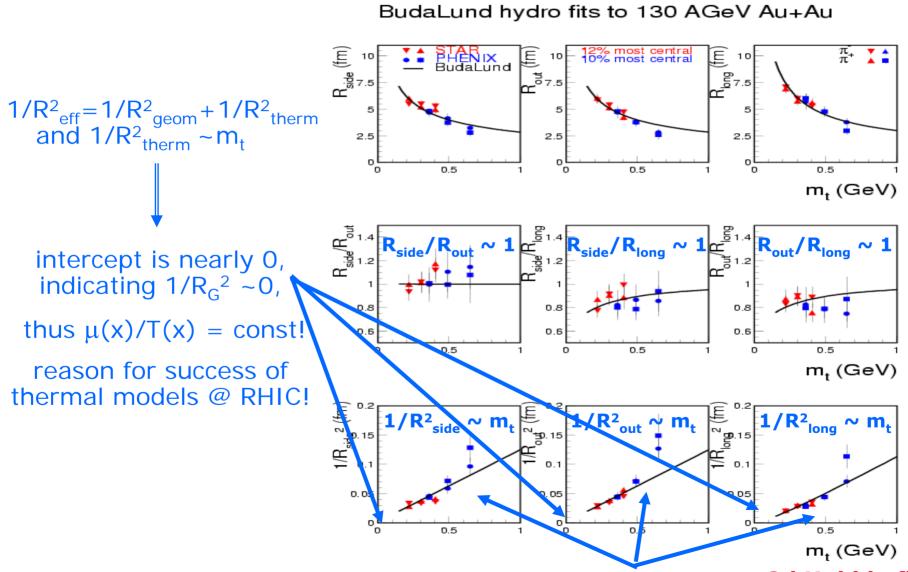
Comparison of expansion rates:

RHIC and the universe

Universality of the Hubble expansion: u = H rHubble constant of the Universe: $H_0 = (71 \pm 7) \text{ km/sec/Mpc}$ converted to SI units: $H_0 = (2.3 \pm 0.2) \times 10^{-18} \text{ sec}^{-1}$

 Hubble constant at Au+Au collisions with 200 GeV

 Method a)
 $H_{RHIC} = \langle u_t \rangle / R_G \sim (3.8 \pm 0.5) \times 10^{22} \text{ sec}^{-1}$


 Method b)
 $H_{RHIC} = 1/\tau_0 \sim (5.1 \pm 0.1 \times 10^{22}) \text{ sec}^{-1}$

Ratio of expansion rates:

 H_{RHIC} / $H_0 \sim 2 \times 10^{40}$

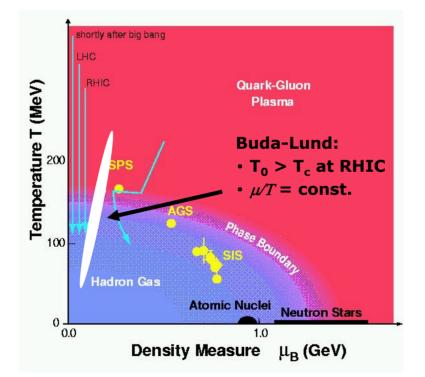
approx. the ratio of the ages of the objects, without correction for inflation...

New ways of plotting the results

same slopes ~ fully developed, **3d Hubble flow**

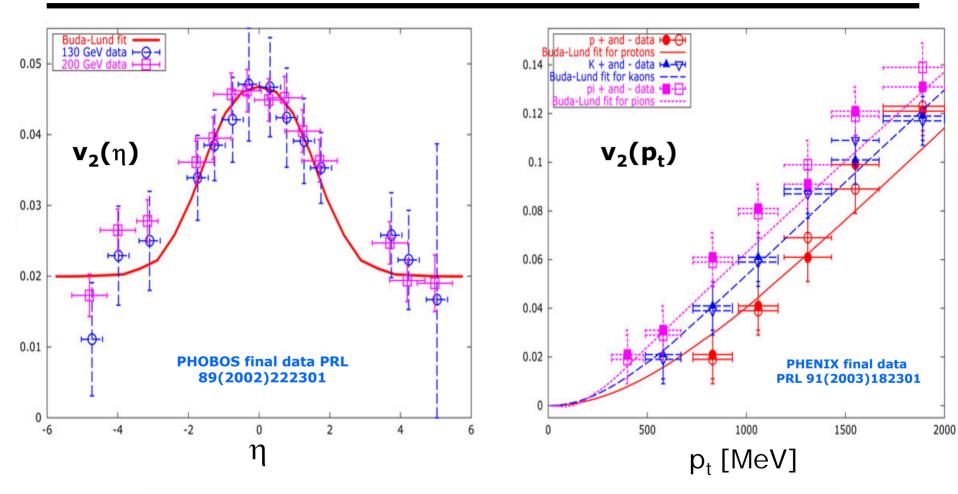
SUMMARY

The analysis of RHIC Au+Au data from BRAHMS, PHOBOS, PHENIX and STAR show:

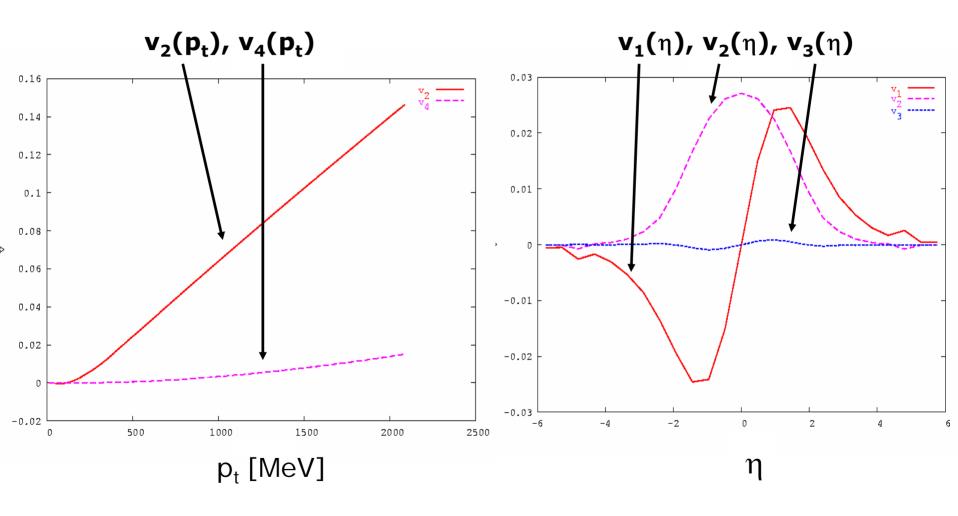

succesful Buda-Lund hydro fits

(also at h+p and Pb+Pb at SPS)

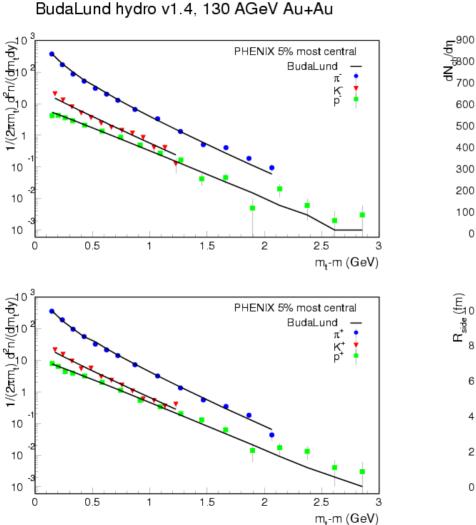
- indication for deconfinement at RHIC (T > $T_c = 172$ MeV by 3σ at RHIC, but not at SPS)
- evidence for a developed 3d Hubble flow at RHIC


A solution of the RHIC HBT puzzle

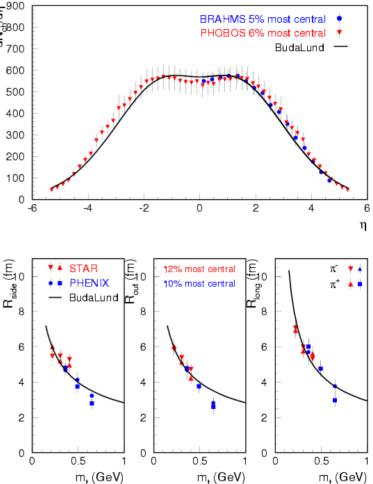
- Our answer: hot center, a fireball heated from inside
- If we assume a hot center, the difference between out and side vanishes


- Confirmed in fits for the rapidity dependence of the elliptic flow, see poster (Flow-12) and nucl-th/0310040
- Prediction: v₄(p_t), v₁(η), v₃(η)

Confirmation of hot center


 $T_s = 105 \text{ MeV}, T_0 = 210 \text{ MeV}, \tau_0 = 7 \text{ fm/c}, \vartheta = 0.09$ $\dot{X} = 0.57, \dot{Y} = 0.45, \dot{Z} = 2.4$ $X_f = 8.6 \text{ fm}, Y_f = 10.5 \text{ fm}, Z_f = 17.5 \text{ fm}$ poster Flow-12, nucl-th/0310040 M. Csand

Prediction



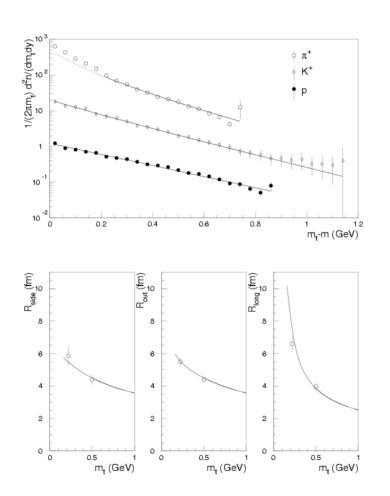
Thank you for your attention.

BudaLund fits to final run-1 RHIC data

Buda-Lund v1.4 fits to 130 AGeV Au+Au

BudaLund fits to final run-1 RHIC data

BL-H	Buda-Lund	Buda-Lund
source	v1.0	v1.4
To [MeV]	202 ± 13	232 ± 16
<u<sub>t></u<sub>	1.0 ±0.2	0.9 ± 0.06
R _G [fm]	9.8 ± 1.2	10.0 Fixed
τ <mark>ο</mark> [fm/c]	6.1 ±0.3	6.1 ±0.3
<u>Δτ [fm/c]</u>	0.0 ± 1.5	0.0 ± 1.0
Δη	2.5 Fixed	2.3 ± 0.04
T_{surf} [MeV]	110 ± 24	94 ± 4
T _{eva} [MeV]	88 ± 25	98 ± 11
μo ^{π-} [MeV]	75 ± 19	97 ± 16
μ <mark>ο^{κ-} [MeV]</mark>	107 ±14	89 ± 27
μο ^{Ρ-} [MeV]	305 ± 41	272 ± 47
μο ^{π+} [MeV]	-	79 ± 13
μ <mark>0^{K+} [MeV]</mark>	-	123 ± 27
μο ^ρ [MeV]	-	353 ± 46
χ^2 /NDF	74/68 =1.08	226/18 =1.25
CL	28.9 %	1.3 %

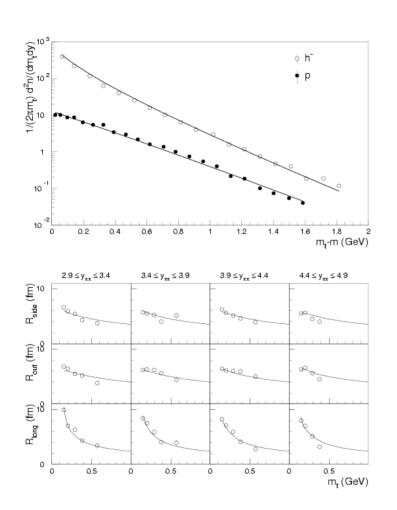

V1.0 fits to STAR & PHENIX data at midrapidity, Deta fixed V1.4 Rg fixed as data determine <ut>/Rg dependence only

NEXT TO DO

Fits to :

new NA49 data (with Kaon correlation), NA44 data, CERES data at SPS. new run-2 data at RHIC

Buda-Lund fits to NA44 Pb+Pb data

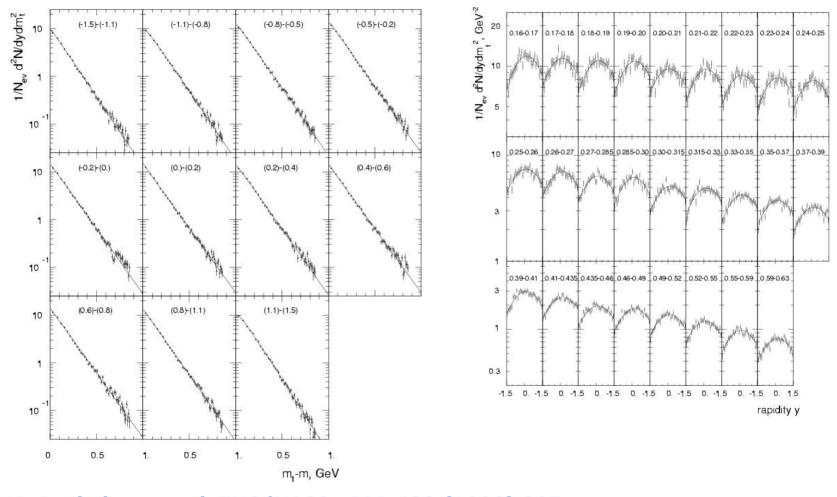


BL-H source parameters		
To	145 ± 3 MeV	
<ut><ut></ut></ut>	0.57 ± 0.12	
R _G	6.9 ± 1.1 fm	
τ <mark>0</mark>	6.1 ± 0.9 fm/c	
$\Delta \tau$	0.1 ± 2.2 fm/c	
Δη	2.4 ± 1.6	
<∆T/T>r	0.08 ± 0.08	
$<\Delta T/T>_t$	0.87 ± 0.72	
χ^2 /NDF	63/71 = 0.89	

Final data Absolute normalization, Boltzmann approx., Ω ~ 1, μ₀ = 0 approx.

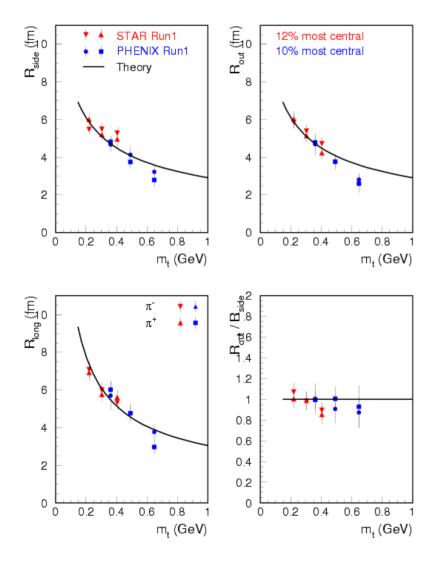
A. Ster, T. Cs, B. Lörstad, hep-ph/9907338

Buda-Lund fits to NA49 Pb+Pb data

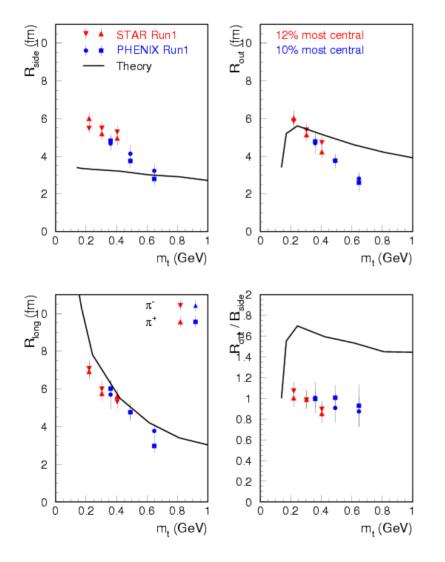


BL-H source parameters		
T ₀	134	± 3 MeV
<u<sub>t></u<sub>	0.61	± 0.05
R _G	7.3	± 0.3 fm
τ0	6.1	± 0.2 fm/c
Δτ	2.8	± 0.4 fm/c
Δη	2.1	± 0.2
<\(\Delta T / T >_r)	0.07	± 0.02
<\(\Delta T / T >_t)		± 0.05
χ^2/NDF	163/98	= 1.66

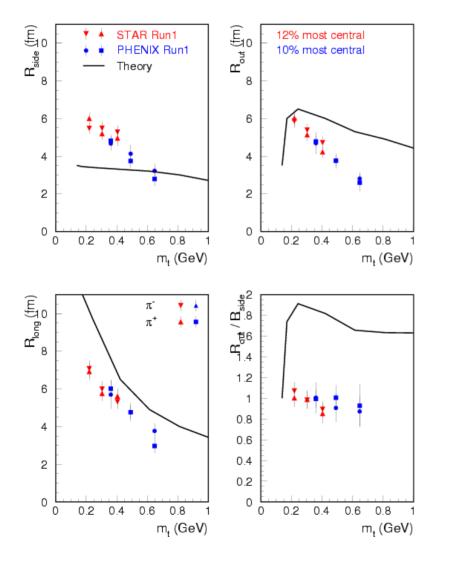
Final data Absolute normalization, Boltzmann approx., Ω ~ 1, μ₀ = 0 approx.


A. Ster, T. Cs, B. Lörstad, hep-ph/9907338

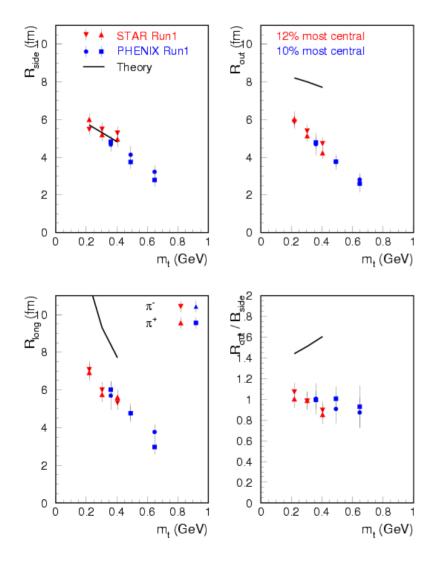
Buda-Lund fits to NA22 h + p data

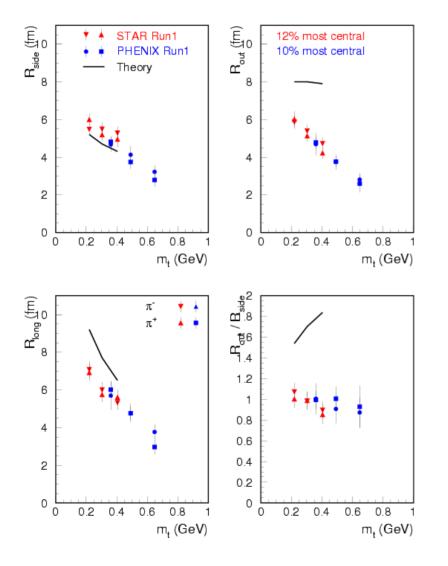

N. M. Agababyan et al, EHS/NA22, PLB 422 (1998) 395 T. Csörgő, hep-ph/001233, Heavy Ion Phys. 15 (2002) 1-80

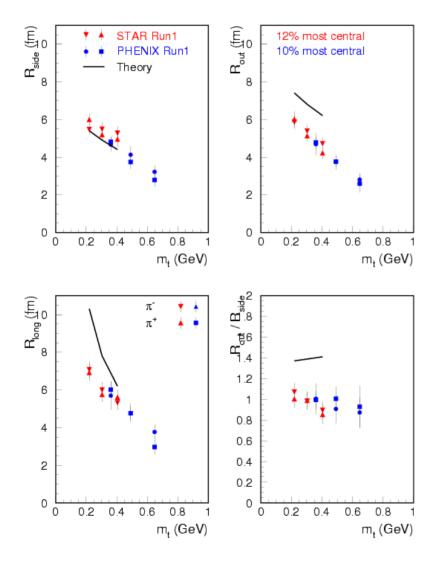
nucl-th/0207016-1 fits to 130 AGeV Au+Au

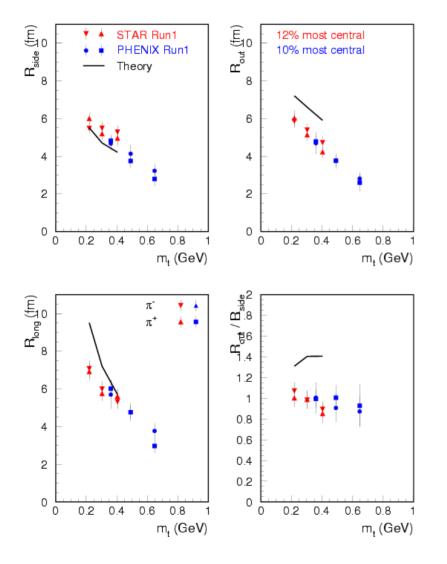


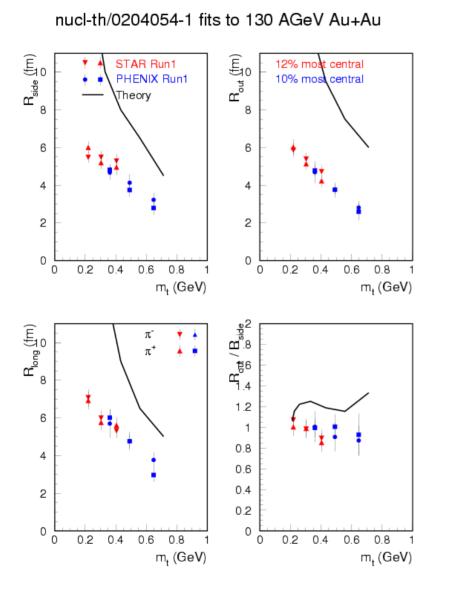
Acceptable


nucl-th/0208068-1 fits to 130 AGeV Au+Au

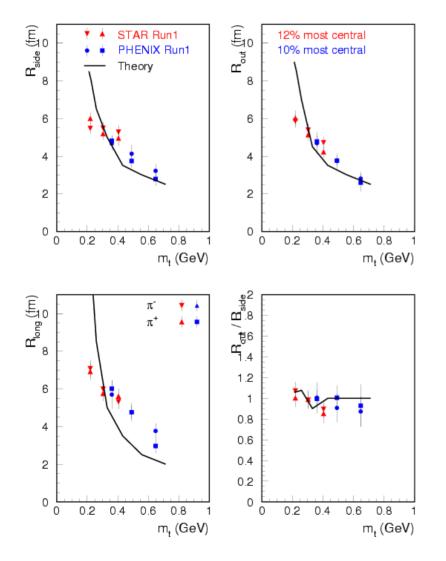

nucl-th/0208068-2 fits to 130 AGeV Au+Au


nucl-th/0209055-1 fits to 130 AGeV Au+Au

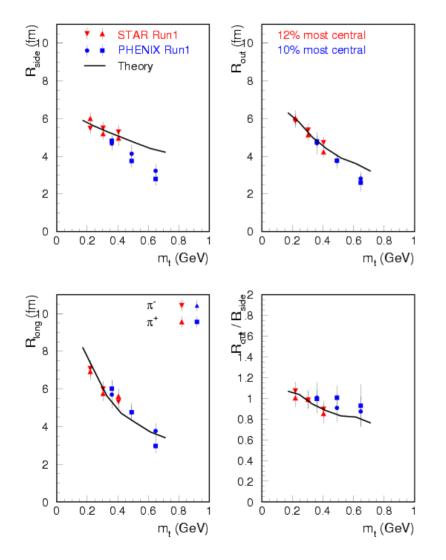

nucl-th/0209055-2 fits to 130 AGeV Au+Au



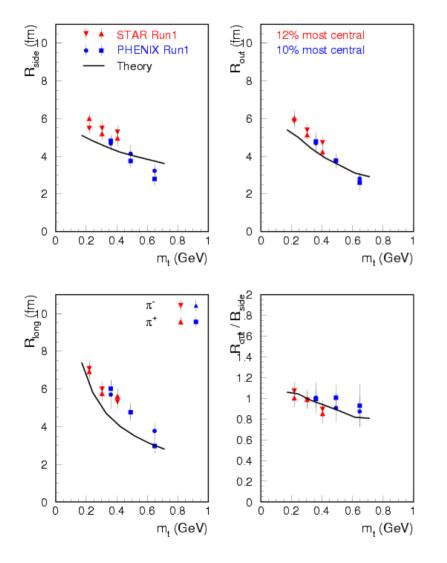
nucl-th/0209055-3 fits to 130 AGeV Au+Au



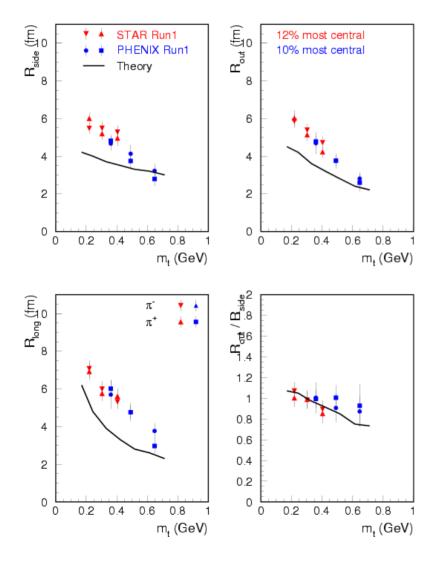
nucl-th/0209055-4 fits to 130 AGeV Au+Au



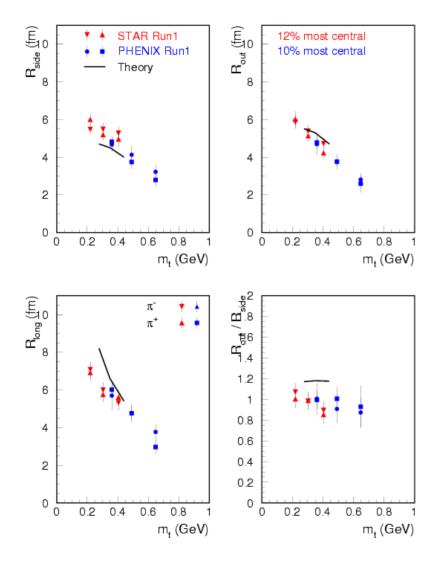
nucl-th/0204054-2 fits to 130 AGeV Au+Au


~ Acceptable

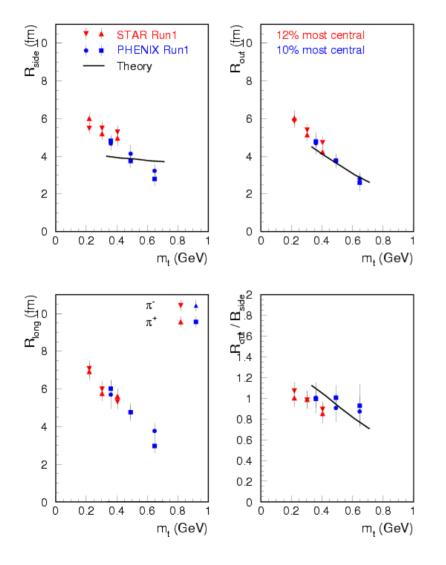
nucl-ex/0307026-1 fits to 130 AGeV Au+Au



Acceptable


nucl-ex/0307026-2 fits to 130 AGeV Au+Au

nucl-ex/0307026-3 fits to 130 AGeV Au+Au



nucl-th/0205053-1 fits to 130 AGeV Au+Au

~ Acceptable

nucl-th/0212053-2 fits to 130 AGeV Au+Au

Models with acceptable results:

nucl-th/0204054	Multiphase Trasport model (AMPT). Z. Lin, C. M. Ko, S. Pal.
nucl-th/0205053	Hadron cascade model. T. Humanic.
nucl-th/0207016	Buda-Lund hydro model. T.Csörgő. A. Ster, Heavy Ion Phys. 17 (2003) 295-312.
nucl-ex/0307026	Blast wave model. F. Retiére for STAR.
Not shown here but accent	ahler

Not shown here but acceptable:

nucl-th/02080683D hydro model. T. Hirano, & T.Tsuda.hep-ph/0209054Cracow (single freeze-out, thermal) model.
W.Broniowski, A. Baran, W. Florkowski.