The Landscape of **Particle Production:** Results from PHOB **Peter Steinberg Brookhaven National Laboratory** California

PHOBOS Collaboration 2004

Birger Back, Mark Baker, Maarten Ballintijn, Donald Barton, Russell Betts, Abigail Bickley, Richard Bindel, Wit Busza (Spokesperson), Alan Carroll, Zhengwei Chai, Patrick Decowski, Edmundo Garcia, Tomasz Gburek, Nigel George, Kristjan Gulbrandsen, Stephen Gushue, Clive Halliwell, Joshua Hamblen, Adam Harrington, Conor Henderson, David Hofman, Richard Hollis, Roman Hołyński, Burt Holzman, Aneta Iordanova, Erik Johnson, Jay Kane, Nazim Khan, Piotr Kulinich, Chia Ming Kuo, Willis Lin, Steven Manly, Alice Mignerey, Gerrit van Nieuwenhuizen, Rachid Nouicer, Andrzej Olszewski, Robert Pak, Inkyu Park, Heinz Pernegger, Corey Reed, Michael Ricci, Christof Roland, Gunther Roland, Joe Sagerer, Iouri Sedykh, Wojtek Skulski, Chadd Smith, Peter Steinberg, George Stephans, Andrei Sukhanov, Marguerite Belt Tonjes, Adam Trzupek, Carla Vale, Siarhei Vaurynovich, Robin Verdier, Gábor Veres, Edward Wenger, Frank Wolfs, Barbara Wosiek, Krzysztof Woźniak, Alan Wuosmaa, Bolek Wysłouch, Jinlong Zhang

ARGONNE NATIONAL LABORATORY INSTITUTE OF NUCLEAR PHYSICS, KRAKOW NATIONAL CENTRAL UNIVERSITY, TAIWAN UNIVERSITY OF MARYLAND BROOKHAVEN NATIONAL LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY UNIVERSITY OF ILLINOIS AT CHICAGO UNIVERSITY OF ROCHESTER

PHOBOS Highlights

- d+Au & p+p physics
 - Multiplicity
 - Inclusive SpectraPID
- Multiparticle Physics
 in Au+Au

PHOBOS 2003

Charged-Particle Multiplicities in p+p & d+Au

Minimum-bias d+Au

See R. Nouicer's talk

Minimum-bias d+Au

See R. Nouicer's talk

Peter Steinberg

Centrality Dependence of d+Au

Centrality (%)	N _{part}	N _{part} (Au)	N _{part} (d)
0-20	15.5	13.5	2.0
20-40	10.8	8.9	1.9
40-60	7.2	5.4	1.7
60-80	4.2	2.9	1.4
80-100	2.7	1.6	1.1

Peter Steinberg

Participant Scaling?

Multiplicity extrapolated to 4π

Relative to p+p multiplicity at same energy, scales with N_{part}/2

No modification with • Beam energy • Nuclear thickness

Is N_{part} Fundamental?

Expectations: "stopping" in d direction "cascading" in Au direction

Why do they add up to N_{part} scaling so robustly?

Same effect in Au+Au

"Long-range" correlation?"

PHOBOS

(p)d+Au in Different Frames

As with Au+Au, "limiting fragmentation region" grows with energy. Shape appears to be constrained by lower-energy p+A data. Surprising over 1.5 orders of magnitude in collision energy.

Peter Steinberg

PHOBOS

PHOBOS

PHOBOS

PHOBOS

PHOBOS

PHOBOS

PHOBOS

Multiparticle Physics: Fluctuations, HBT, Flow

Forward Multiparticle Physics in Au+Au

 4π multiplicity measurements show long-range correlation

- Fluctuations & Correlations
- HBT Correlations
- Azimuthal asymmetries

Long-Range vs. Short-Range effects

Forward-Backward Correlations

PHOBOS study for Au+Au:

$$C = \frac{F - B}{\sqrt{F + B}} \Longrightarrow \sigma(C) = \sqrt{\kappa}$$

K. Wozniak talk

Correlations consistent w/ UA5
 Weak rapidity dependence from 1<|η|<3

UA5 p+p: 2-particle clusters explain

• Short-range correlations in $\boldsymbol{\eta}$

-5 -4 -3 -2 -1

FB correlations

PHOBOS

Longitudinal Dynamics with HBT

See talk by B. Holzman, poster by C.M.Kuo

Particles at a given rapidity are correlated with a source at the same rapidity

Similar to FB result: correlations are local in rapidity.

Directed and Elliptic Flow

Elliptic Flow vs. Centrality

Overall shape simple, but still unexplained

Peter Steinberg

Elliptic Flow vs. Centrality

Peter Steinberg

Directed Flow vs. Energy

Dramatic change of directed flow near $\eta=0$

Peter Steinberg

Directed Flow vs. Energy

Dramatic change of directed flow near $\eta=0$

Peter Steinberg

"Limiting Fragmentation" of v_1

Similar directed flow relative to beam rapidity

Peter Steinberg

"Limiting Fragmentation" of v_1

Similar directed flow relative to beam rapidity

Peter Steinberg

Connection with Net Baryons?

Peak of baryon density at AGS/SPS at η'~-1.5 (Busza & Goldhaber '84)

Peter Steinberg

Directed & Elliptic Flow

Peter Steinberg

Directed & Elliptic Flow

Identified Particles in d+Au

Ratios with dE/dx PID

PHOBOS

Identified Particle Ratios

Peter Steinberg

Identified Particle Ratios

Peter Steinberg

Identified Particle Ratios

Peter Steinberg

PHOBOS <u>TOF</u> PID

Peter Steinberg

Particle Ratios at High-p_T

Main difference between p and \bar{p} is overall yield. Spectral shape only slightly modified vs. p_T

Peter Steinberg

Particle Ratios at High-p_T

Main difference between p and \bar{p} is overall yield. Spectral shape only slightly modified vs. p_T

Peter Steinberg

TOF PID Spectra d+Au

Pending weak-decay correction

m_T Scaling in d+Au and Au+Au

m_T Scaling in d+Au and Au+Au

m_T Scaling in d+Au and Au+Au

PHOBOS

d+Au Inclusive Spectra vs. η

Inclusive Charged Hadrons in d+Au

PRL91, 072302 (2003)

 R_{d+Au}

Inclusive Charged Hadrons in d+Au

PRL91, 072302 (2003)

Peter Steinberg

Spectra in d+Au for $\eta > 0$

Systematic decrease in R_{d+Au} with increasing η Saturation of ratio also occurs at a lower p_T

η -Dependence of \mathbf{R}_{d+Au}

Monotonic evolution from mid-rapidity to forward rapidities. BRAHMS data is a continuation of trends starting at η =0

Peter Steinberg

The Landscape of Particle Production

- N_{part} scaling & limiting fragmentation
- Long range correlations in η ?
 - Forward Multiparticle Physics in Au+Au
 - FB & HBT show effects local in η for $|\eta| < 3$
 - First measurement of directed flow vs. η & \sqrt{s}
- Identified Particle Spectra in d+Au
- PID Spectra in d+Au, Au+Au for Run-4
- Proton and antiproton spectra similar
 - Inclusive d+Au Charged Spectra vs. η
 - Strong η dependence interpolates between $\eta \text{=} \text{0}$ and forward η

Peter Steinberg

Backup Slides

Relative Yields vs. p_T

PHOBOS d+Au 200 GeV

m_T Scaling and Strangeness

Factor of 2 brings K's into line ($\gamma_s \sim 0.5$ in pp)

Peter Steinberg

Nowhere to hide!

Peter Steinberg

Principal Axes

Heavy-ion collisions dominated by N_{part} fluctuations

Decouple total from relative fluctuations

$$C = \frac{P - N}{\sqrt{P + N}}$$

Independently partitioned between P & N

 $\sigma(C) = 1$

(flipping a coin, random walk...)

Peter Steinberg

Forward-Backward Correlations

Simple Exercise

Let's play a game: Shift PYTHIA dN/dyby $\Delta y = 1$

Scale up by $N_{part}/2$

Recalculate $dN/d\eta$

Similar shapes (violates energy conservation 🟵)

Peter Steinberg

Participant Scaling

Transition to d+Au