The Landscape of
 Particle Production:

Results from $\operatorname{Pitc} \mathrm{F}_{\mathrm{p}} \mathrm{O}_{5}$
Peter Steinberg
Brookhaven National Laboratory

Califormia
 QM2004
 SESCUCEREIENL - FOVEARS

PHOBOS Collaboration 2004

Birger Back, Mark Baker, Maarten Ballintijn, Donald Barton, Russell Betts, Abigail Bickley, Richard Bindel, Wit Busza (Spokesperson), Alan Carroll, Zhengwei Chai, Patrick Decowski, Edmundo Garcia, Tomasz Gburek, Nigel George, Kristjan Gulbrandsen, Stephen Gushue, Clive Halliwell, Joshua Hamblen, Adam Harrington, Conor Henderson, David Hofman, Richard Hollis, Roman Hołyński, Burt Holzman, Aneta Iordanova, Erik Johnson, Jay Kane, Nazim Khan, Piotr Kulinich, Chia

Ming Kuo, Willis Lin, Steven Manly, Alice Mignerey, Gerrit van Nieuwenhuizen, Rachid Nouicer, Andrzej
Olszewski, Robert Pak, Inkyu Park, Heinz Pernegger, Corey Reed, Michael Ricci,
Christof Roland, Gunther Roland, Joe Sagerer, Iouri Sedykh, Wojtek Skulski, Chadd Smith, Peter Steinberg, George Stephans, Andrei Sukhanov, Marguerite Belt Tonjes, Adam Trzupek, Carla Vale, Siarhei Vaurynovich, Robin Verdier, Gábor Veres, Edward Wenger, Frank Wolfs, Barbara Wosiek, Krzysztof Woźniak, Alan Wuosmaa, Bolek Wysłouch, Jinlong Zhang

ARGONNE NATIONAL LABORATORY INSTITUTE OF NUCLEAR PHYSICS, KRAKOW NATIONAL CENTRAL UNIVERSITY, TAIWAN UNIVERSITY OF MARYLAND

BROOKHAVEN NATIONAL LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY UNIVERSITY OF ILLINOIS AT CHICAGO UNIVERSITY OF ROCHESTER

PHOBOS Highlights

- $d+A u \& p+p$ physics
- Multiplicity
- Inclusive Spectra
- PID
- Multiparticle Physics in Au+Au

PHOBOS 2003

Several crucial upgrades for d+Au
Check out our student posters!

Charged-Particle Multiplicities in $\mathrm{p}+\mathrm{p} \& \mathrm{~d}+\mathrm{Au}$

Minimum-bias d+Au

See R. Nouicer's talk

Minimum-bias d+Au

See R. Nouicer's talk

Centrality Dependence of $\mathrm{d}+\mathrm{Au}$

Centrality $(\%)$	$N_{\text {part }}$	$N_{\text {part }}(\mathrm{Au})$	$N_{\text {part }}(\mathrm{d})$
$0-20$	15.5	13.5	2.0
$20-40$	10.8	8.9	1.9
$40-60$	7.2	5.4	1.7
$60-80$	4.2	2.9	1.4
$80-100$	2.7	1.6	1.1

Participant Scaling?

Multiplicity extrapolated to 4π

Relative to p+p multiplicity at same energy, scales with $\mathrm{N}_{\text {part }} / 2$

No modification with

- Beam energy
- Nuclear thickness
- 200 GeV dAu vs centrality
- 200 GeV dAu Min-Bias
§ 200 GeV pp inelastic
PHOBOS
Preliminary
E178
(Busza et al.)
$\diamond 19.4 \mathrm{GeV}$ pC
$\diamond 13.7 \mathrm{GeV}$ pC
$\diamond 9.69 \mathrm{GeV} \mathrm{pC}$
\& 19.4 GeV pCu
\& 13.7 GeV pCu
\& 9.69 GeV pCu
$\triangle 19.4 \mathrm{GeV}$ pPb
$\triangle 13.7 \mathrm{GeV} \mathrm{pPb}$
$\triangle 9.69 \mathrm{GeV} \mathrm{pPb}$

Is $\mathbf{N}_{\text {part }}$ Fundamental?

Expectations:
"stopping" in d direction
"cascading" in Au direction
Why do they add up to
$\mathrm{N}_{\text {part }}$ scaling so robustly?
Same effect in Au+Au
"Long-range" correlation?

(p)d+Au in Different Frames

As with AutAu, "limiting fragmentation region" grows with energy. Shape appears to be constrained by lower-energy p+A data. Surprising over 1.5 orders of magnitude in collision energy.

Can we build $\mathrm{Au}+\mathrm{Au}$ with $\mathrm{p}+\mathrm{p} / \mathrm{d}+\mathrm{Au}$?

Can we build $A u+A u$ with $p+p / d+A u$?

Can we build $\mathrm{Au}+\mathrm{Au}$ with $\mathrm{p}+\mathrm{p} / \mathrm{d}+\mathrm{Au}$?

Can we build $\mathrm{Au}+\mathrm{Au}$ with $\mathrm{p}+\mathrm{p} / \mathrm{d}+\mathrm{Au}$?

Can we build $\mathrm{Au}+\mathrm{Au}$ with $\mathrm{p}+\mathrm{p} / \mathrm{d}+\mathrm{Au}$?

Can we build $\mathrm{Au}+\mathrm{Au}$ with $\mathrm{p}+\mathrm{p} / \mathrm{d}+\mathrm{Au}$?

Can we build $\mathrm{Au}+\mathrm{Au}$ with $\mathrm{p}+\mathrm{p} / \mathrm{d}+\mathrm{Au}$?

Multiparticle Physics: Fluctuations, HBT, Flow

Forward Multiparticle Physics in Au+Au

4π multiplicity measurements show long-range correlation

- Fluctuations \& Correlations Long-Range
- HBT Correlations
- Azimuthal asymmetries
vS.
Short-Range effects

Forward-Backward Correlations

PHOBOS study for AutAu:

$$
\begin{gathered}
C=\frac{F-B}{\sqrt{F+B}} \Rightarrow \sigma(C)=\sqrt{\kappa} \\
\text { K. Wozniak talk }
\end{gathered}
$$

- Correlations consistent w/UA5 Weak rapidity dependence from $1<|\eta|<3$

UA5 $\bar{p}+p: 2-p a r t i c l e ~ c l u s t e r s ~ e x p l a i n ~$

- Short-range correlations in η
- FB correlations

Directed and Elliptic Flow

Elliptic Flow vs. Centrality

$$
v_{2}^{\text {central }}(\eta) \propto v_{2}^{\text {peripheral }}(\eta)
$$

Overall shape simple, but still unexplained

Elliptic Flow vs. Centrality

$$
v_{2}^{\text {central }}(\eta) \propto v_{2}^{\text {peripheral }}(\eta)
$$

Overall shape simple, but still unexplained

Directed Flow vs. Energy

Dramatic change of directed flow near $\eta=0$

Directed Flow vs. Energy

Dramatic change of directed flow near $\eta=0$

"Limiting Fragmentation" of v_{1}

Similar directed flow relative to beam rapidity

"Limiting Fragmentation" of v_{1}

PRL91 (2003), Poster by B. Back

Similar directed flow relative to beam rapidity

Connection with Net Baryons?

BRAHMS, nucl-ex/0312023

Peak of baryon density at AGS/SPS at $\eta^{\prime} \sim-1.5$ (Busza \& Goldhaber '84)

Directed \& Elliptic Flow

Directed \& Elliptic Flow

Identified Particles in $\mathrm{d}+\mathrm{Au}$

Ratios with dE/dx PID

A "classic" PHOBOS measurement: Two charge signs, two bending directions...

...but now we have

$$
\begin{array}{cc}
p+p & 0 \\
d+A u & 8 \\
A u+A u \quad 888
\end{array}
$$

Identified Particle Ratios

d+Au: nucl-ex/0309013
Au+Au: PRC-R67 (2003)

Number of Collisions $\langle v\rangle$
$p+p \rightarrow d+A u: N o$ modification (cf. multiplicity)
Au+Au: Additional net-baryons near $\eta=0$

Identified Particle Ratios

d+Au: nucl-ex/0309013
AutAu: PRC-R67 (2003)

Number of Collisions $\langle v\rangle$
$p+p \rightarrow d+A u:$ No modification (cf. multiplicity)
Au +Au: Additional net-baryons near $\eta=0$

Identified Particle Ratios

d+Au: nucl-ex/0309013
Au+Au: PRC-R67 (2003)

Number of Collisions $\langle v\rangle$
$p+p \rightarrow d+A u: N o$ modification (cf. multiplicity)
Au +Au: Additional net-baryons near $\eta=0$

PHOBOS TOF PID

Particle Ratios at High- p_{T}

Main difference between p and \bar{p} is overall yield. Spectral shape only slightly modified vs. p_{T}

Particle Ratios at High- p_{T}

Main difference between p and \bar{p} is overall yield. Spectral shape only slightly modified vs. p_{T}

TOF PID Spectra d+Au

m_{T} Scaling in $\mathrm{d}+\mathrm{Au}$ and $\mathrm{Au}+\mathrm{Au}$

m_{T} Scaling in $\mathrm{d}+\mathrm{Au}$ and $\mathrm{Au}+\mathrm{Au}$

m_{T} Scaling in $\mathrm{d}+\mathrm{Au}$ and $\mathrm{Au}+\mathrm{Au}$

d+Au Inclusive Spectra vs. η

Inclusive Charged Hadrons in d+Au

PRL91, 072302 (2003)
$A u+A u$ and $d+A u$ scale differently relative to $\mathrm{N}_{\text {coll }}$

$$
R_{d+A u}=\frac{1}{N_{\text {coll }}} \frac{d N^{d+A u} / d p_{T}}{d N^{p+p} / d p_{T}}
$$

Inclusive Charged Hadrons in d+Au

PRL91, 072302 (2003)
$A u+A u$ and $d+A u$ scale differently relative to $\mathrm{N}_{\text {coll }}$

$$
R_{d+A u}=\frac{1}{N_{\text {coll }}} \frac{d N^{d+A u} / d p_{T}}{d N^{p+p} / d p_{T}}
$$

PHOBOS has a "forward" acceptance (\& more in the future!)

Spectra in $d+A u$ for $\eta>0$

Systematic decrease in $R_{d+A u}$ with increasing η Saturation of ratio also occurs at a lower p_{T}

η-Dependence of $\mathbf{R}_{d+A u}$

Monotonic evolution from mid-rapidity to forward rapidities. BRAHMS data is a continuation of trends starting at $\eta=0$

The Landscape of Particle Production

- $N_{\text {part }}$ Scaling \& limiting fragmentation
- Long range correlations in η ?
- Forward Multiparticle Physics in Au+Au
- FB \& HBT show effects local in η for $|\eta|<3$
- First measurement of directed flow vs. η \& $\sqrt{ }$
- Identified Particle Spectra in d+Au
- PID Spectra in d+Au, Au+Au for Run-4
- Proton and antiproton spectra similar
- Inclusive d+Au Charged Spectra vs. η
- Strong η dependence interpolates between $\eta=0$ and forward η

Backup Slides

Relative Yields vs. p_{T}

m_{T} Scaling and Strangeness

Factor of 2 brings K's into line ($\gamma_{\mathrm{s}} \sim 0.5$ in pp)

PHOBOS Coverage $d \mathrm{~N} / \mathrm{d} \eta$

Principal Axes

Heavy-ion collisions dominated by $\mathrm{N}_{\text {part }}$ fluctuations

Decouple total from relative fluctuations

$$
C=\frac{P-N}{\sqrt{P+N}}
$$

Independently partitioned between P \& N

$$
\sigma(C)=1
$$

(flipping a coin, random walk...)

Forward-Backward Correlations

Simple Exercise

Let's play a game:

Shift PYTHIA dN/dy by $\Delta y=1$

Scale up by $\mathrm{N}_{\text {part }} / 2$
Recalculate $\mathrm{dN} / \mathrm{d} \eta$

> Similar shapes
> (violates energy
> conservation (\%)

Participant Scaling

Wounded Nucleon "Scaling"
 $$
\begin{gathered} \frac{1}{2} N_{p a r t} \times N_{e+e-} \\ \neq \\ \frac{1}{2} N_{p a r t} \times N_{p p} \end{gathered}
$$

Transition to $\mathrm{d}+\mathrm{Au}$
$\mathbf{N}_{\text {part }}$

- PHOBOS

400

