



1

### Collective flow

Fabrice Retière Lawrence Berkeley National Laboratory





### **Flow** (in the transverse plane) *A mid-peripheral collision*









Recent data on anisotropic flow
v<sub>1</sub>, v<sub>2</sub>, v<sub>4</sub> and non-flow issues
Coping with a wealth of data selfconsistently and quantitatively
What flow? partonic or hadronic, or both?
Summary













NA49, Phys. Rev. C 69 (2003) 034903 Talks by M. Belt-Tonjes (PHOBOS),

A.Tang (STAR)

Posters by H. Masui (PHENIX), M. Oldenburg (STAR)









STAR, nucl-ex/0310029 NA49, Phys. Rev. C 69 (2003) 034903 Talks by M. Belt-Tonjes (PHOBOS), A.Tang (STAR)

Posters by H. Masui (PHENIX), M. Oldenburg (STAR)









STAR, nucl-ex/0310029 NA49, Phys. Rev. C 69 (2003) 034903 Talks by M. Belt-Tonjes (PHOBOS),

- A.Tang (STAR)
- Posters by H. Masui (PHENIX), M. Oldenburg (STAR)





### Directed flow v<sub>1</sub>



Posters by H. Masui (PHENIX), M. Oldenburg (STAR)





### Directed flow v<sub>1</sub>















### v<sub>2</sub> vs rapidity at RHIC



This afternoon's talk by M.B. Tonjes's (PHOBOS) and U.Heinz (theory) M.Oldenburg's poster (STAR)





v<sub>2</sub> vs rapidity at RHIC



This afternoon's talk by M.B. Tonjes's (PHOBOS) and U.Heinz (theory) M.Oldenburg's poster (STAR)



Higher harmonics  $v_4$  and  $v_6$ 

STAR, Au-Au  $\sqrt{s}=200$  GeV Talk by A. Poskanzer



- New constraints to models
  - Hydro\* does not get v<sub>2</sub> and v<sub>4</sub> simultaneously
    - >  $v_2$  scaled by 0.55 to match data
  - Blast wave
    - Parameters fixed to fit v<sub>2</sub>
    - requires a 4<sup>th</sup> order parameters (see A. Poskanzer's talk)

\*P.Kolb Phys.Rev. C68 (2003) 031902





### Non-flow issues

STAR preliminary, √s=200 GeV



#### • v2

- Scalar products<sup>(1)</sup>
  - Sensitive to both flow and non-flow
- $\Delta \phi$  correlation
  - Disentangle jets from flow
- Lee-Yang zeroes<sup>(2)</sup> and high order cumulants
  - Cumulants even from PHENIX<sup>(3)</sup>
- (1) A. Tang's talk
- (2) N. Borghini's talk
- (3) M. Issah's poster





Other data sensitive to flow are also becoming available

- Spectra
  - Different energy
    - > AGS energies
    - > SPS: 20, 30 40, 80, 60
    - > RHIC: 19.6, 130, 200
  - Many particle species, e.g.
    - > Ξ, Ω, φ
    - Charm
  - Many centralities
  - Different rapidities

- Two-particle correlations
  - Source size (HBT)
    - Different energy
    - Different centrality
    - Different rapidity
    - Kaons
    - Wrt reaction plane
  - Source shift (Non-id correlation)
    - Tuesday's talk by A.Kisiel
    - > Including  $\pi \Xi$  correlation!





### Understanding flow

- Requires to describe the data (spectra, anisotropic flow, two-particle correlations):
  - Self-consistently
  - Quantitatively
- And understand the **evolution of the system** 
  - No definite conclusions can be made with only freeze-out parameterizations







- Hadronic cascades (RQMD, uRQMD, ...)
  - Do well at SPS, except too long source size
  - Flow too weak at RHIC
- Partonic cascades (MPC, AMPT, ...)
  - Do a reasonable job at RHIC with huge partonic x-sections
- Hydro
  - Do well for spectra and v<sub>2</sub>
  - Do not reproduce source size and lifetime (from HBT)
- See for details:
- Following talk by T.Hirano
- This afternoon's talks by S.Bass, U.Heinz, D. Molnar, E.Shuryak, D.Teaney





18

### Understanding flow: parameterizations



- Self-consistent
- Quantitative characterization of the freeze-out stage
- On the market
  - "Krakow" single freeze-out"
  - BudaLund\*\*
  - Blast Wave
  - Do not describe the system evolution
- \*Friday's talk by W.Florkowski
- W.Broniowski et al., nucl-th/0212052, nucl-th/0212053, ...
- \*\* tuedsay's talk and poster by M.Csanad

M. Csanád, T. Csörgő, B. Lörstad and A. Ster, nuclth/0311102 and nucl-th/0310040, ...





$$\begin{split} T &= 106 \pm 1 \text{ MeV} \\ &< \beta_{InPlane} > = 0.571 \pm 0.004 \text{ c} \\ &< \beta_{OutOfPlane} > = 0.540 \pm 0.004 \text{ c} \\ R_{InPlane} &= 11.1 \pm 0.2 \text{ fm} \\ R_{OutOfPlane} &= 12.1 \pm 0.2 \text{ fm} \\ \text{Life time } (\tau) &= 8.4 \pm 0.2 \text{ fm/c} \\ \text{Emission duration} &= 1.9 \pm 0.2 \text{ fm/c} \\ \chi^2/dof &= 120 / 86 \end{split}$$

Latest paper (long legacy), F.R and M.Lisa nucl-th/0312024



Parameterization  $\Rightarrow$  parameters  $\frac{2}{3}$ System deformation in the Blast Wave





 Final state eccentricity from

- v<sub>2</sub>
- HBT with respect to reaction plane





## Now, that we can characterize flow, let's ask the most important question:

Is flow partonic, hadronic or both?

Is flow partonic, hadronic or both?

✓ Only the models with a partonic stage *reproduce* flow data ✓ Hadronisation by quark coalescence. Wait for R. Fries' talk. □ Are resonance yields affected by a hadronic rescattering stage?  $\Box$  Do  $\phi$ ,  $\Xi$  and  $\Omega$  flow? Do they flow as  $\pi$ , K, p? □ What is the flow of photons not coming from hadron decay? □ Do charm hadrons flow?  $\phi, \Xi, \Omega$ **π**, K, p U O Partonic Hadron Resonances Sketch by S. Bass Photons Photons Photons (from hadrons) (thermal) (prompt) 22 harm Charm







## Significant $\Xi$ and $\Omega \, v_2$ Multi-Strange Baryon flow









# The Blast Wave side of the story Early freeze-out of $\Xi$ and $\Omega$



26

Photon flow fully driven by  $\pi_0$  flow?

This afternoon's talk by M. Kaneta

2



**CCCCCC** 





### Electron $v_2$ and Charm flow





### Summary



• A wealth of data probing flow becoming available

- v<sub>1</sub>, v<sub>2</sub>, v<sub>4</sub>, v<sub>6</sub>, spectra, and two-particle correlations
- Data described quantitatively and self-consistently by parameterizations
  - > What about models? (please release your code)
- Data pointing to flow being a combination of partonic and hadronic flow at RHIC
  - Final conclusion pending ...
- Outlook:
  - More  $\phi$ ,  $\Xi$ ,  $\Omega$ , charm, photons, non-id correlations
  - My wish: so much data will make the models converge<sup>29</sup>







### BudaLund



M. Csanád, T. Csörgő, B. Lörstad and A. Ster

#### (Tuesday's talk and poster)

BudaLund v1.5 hydro fits to 200 AGeV Au+Au

PHENIX and BudaLund v1.5, 200 GeV Au+Au







32

## Hadronization by quark coalescence: v<sub>2</sub> scaling by quarks









#### Simultaneous fit to

- Spectra
- V<sub>2</sub>
- HBT radii



### Example of self-consistency The Blast Wave parameterization



Simultaneous fit to

- Spectra
- V<sub>2</sub>
- HBT radii

\*\*\*\*\*



### Example of self-consistency The Blast Wave parameterization



Simultaneous fit to

- Spectra
- v<sub>2</sub>
- HBT radii





### Quantifying the flow strength

