Leptons, Photons, and Heavy Quarks

Ralf Averbeck
State University of New York at Stony Brook

Quark Matter 2004, Oakland
January 11 - 17, 2004
Outline

- **Low and Intermediate-Mass Dileptons**
 - open questions
 - pending answers

- **Direct Photons**
 - controlling jets

- **Heavy Flavor**
 - charmonia
 - news from SPS
 - preparing the case for RHIC
 - open charm at RHIC
 - reference and probe

- **Summary**
SPS dilepton experiments: open questions

- low-mass dielectrons
 - excess established by NA45/CERES
 - vector mesons, i.e. ω, ϕ?
 - where are they?
 - medium modifications of yield, mass, width?
SPS dilepton experiments: open questions

- low-mass dielectrons
 - excess established by NA45/CERES
 - vector mesons, i.e. ω, ϕ?
 - where are they?
 - medium modifications of yield, mass, width?

- the ϕ puzzle
 - discrepancy between NA49 ($\phi \to K^+K^-$) and NA50 ($\phi \to \mu^+\mu^-$)
 - physics (ϕ in-medium vs. ϕ at freeze-out)?
SPS dilepton experiments: open questions

- low-mass dielectrons
 - excess established by NA45/CERES
 - vector mesons, i.e. ω, ϕ?
 - where are they?
 - medium modifications of yield, mass, width?

- the ϕ puzzle
 - discrepancy between NA49 ($\phi \rightarrow K^+K^-$) and NA50 ($\phi \rightarrow \mu^+\mu^-$)
 - physics (ϕ in-medium vs. ϕ at freeze-out)?

- origin of intermediate-mass dimuons
 - dimuon excess observed at intermediate masses (NA50)
 - charm enhancement?
 - thermal dimuons?
SPS dilepton experiments: open questions

- low-mass dielectrons
 - excess established by NA45/CERES
 - vector mesons, i.e. \(\omega, \phi \)?
 - where are they?
 - medium modifications of yield, mass, width?

- the \(\phi \) puzzle
 - discrepancy between NA49 (\(\phi \to K^+K^- \)) and NA50 (\(\phi \to \mu^+\mu^- \))
 - physics (\(\phi \) in-medium vs. \(\phi \) at freeze-out)?

- origin of intermediate-mass dimuons
 - dimuon excess observed at intermediate masses (NA50)
 - charm enhancement?
 - thermal dimuons?
SPS dilepton experiments: answers?

NOT YET!
SPS dilepton experiments: perspectives!

- NA45/CERES (talks by A. Marin, A. Cherlin)
 - improved mass resolution (TPC)
 - possibility for $\phi \rightarrow e^+e^-$ and $\phi \rightarrow K^+K^-$ in one experiment
 - work in progress
SPS dilepton experiments: perspectives!

- **NA45/CERES** (talks by A. Marin, A. Cherlin)
 - improved mass resolution (TPC)
 - possibility for \(\phi \rightarrow e^+e^-\) and \(\phi \rightarrow K^+K^-\) in one experiment
 - work in progress

- **NA60** (talks by P. Sonderegger, A. David)
 - DESIGNED to answer open questions!
 - high statistics due to selective trigger
 - good mass resolution (~20 MeV for \(\omega,\phi\))
 - good phase-space coverage (down to zero \(p_T\))
 - 50 \(\mu m\) secondary vertex resolution (prompt \(\mu\) vs. \(\mu\) from charm decays)
SPS dilepton experiments: perspectives!

- NA45/CERES (talks by A. Marin, A. Cherlin)
 - improved mass resolution (TPC)
 - possibility for $\phi \rightarrow e^+e^-$ and $\phi \rightarrow K^+K^-$ in one experiment
 - work in progress

- NA60 (talks by P. Sonderegger, A. David)
 - DESIGNED to answer open questions!
 - high statistics due to selective trigger
 - good mass resolution (~20 MeV for ω, ϕ)
 - good phase-space coverage (down to zero p_T)
 - 50 μm secondary vertex resolution (prompt μ vs. μ from charm decays)

- Indium+Indium at 158 AGeV (2003)
 - >10^6 low-mass dimuons!
 - S/B: $1/2 - 1$ (depending on centrality)
 - >10^5 $\phi \rightarrow \mu^+\mu^-$
 - $\phi \rightarrow K^+K^-$ feasible as well
Low-mass dileptons at RHIC

- **PHENIX (talk by R. Seto):** resonance measurements in leptonic and hadronic channels in ONE experiment
- Look forward to results from large statistics Au+Au Run04 at RHIC
 - ρ, ω, ϕ
 - Continuum (low and intermediate mass)
- **RHIC upgrades (talk by A. Drees):**
 - Electron identification \Rightarrow Dalitz / Conversion rejection (poster by I. Ravinovich)
 - Silicon vertex spectrometers \Rightarrow resolve secondary vertices (heavy flavor physics)
- PHENIX Preliminary
- Posters by C. Maguire, D. Pal, Y. Tsuchimoto
Virtual photons → real photons

- real photon sources in AA collisions
 - “trivial” ⇔ background
 - decays of light hadrons ($\pi^0 \rightarrow \gamma \gamma$)
 - dominant at low / intermediate p_T (few GeV/c)
 - “thermal” ⇔ black body radiation from hot medium
 - partonic and/or hadronic medium
 - expected at low p_T on top of huge background
 - “direct” ⇔ photons from initial state hard scattering
 - Compton scattering dominates, i.e. probe for gluon distribution
 - calculable in pQCD
 - no fragmentation of photon!
 - photon “shines through” hot and dense medium!

- direct photons “calibrate” hard scattering processes
 ⇒ IDEAL CONTROL EXPERIMENT FOR JET SUPPRESSION!

- how-to measure direct photons
 - subtraction of “background” photons (WA98 / PHENIX)
 - photon correlations (WA98 talk by D. Peressounko)
Virtual photons \rightarrow real photons

- real photon sources in AA collisions
 - "trivial" \Leftrightarrow background
 - decays of light hadron sources
 - dominant at low / intermediate p_T
 - "thermal" \Leftrightarrow black body
 - partonic and/or hadronic sources
 - expected at low p_T on top of huge background
 - "direct" \Leftrightarrow photons from:
 - Compton scattering dominant
 - calculable in pQCD
 - no fragmentation of photon
 - photon "shines through"

- direct photons "calibrate" hard scattering processes
 \Rightarrow IDEAL CONTROL EXP

- how-to measure direct photons
 - subtraction of "background"
 - photon correlations (WA98 talk by D. Peressounko)

Correlation method:
- The lowest yield ($R_o=0$)
- Most probable yield ($R_o=6$ fm)

Subtraction method, upper limit

Predictions
- hadronic gas
- QGP
- pQCD
- sum

Most probable yield (Ro=6 fm)
Virtual photons \rightarrow real photons

- real photon sources in AA collisions
 - “trivial” ⇔ background
 - decays of light hadrons ($\pi^0 \rightarrow \gamma \gamma$)
 - dominant at low / intermediate p_T (few GeV/c)
 - “thermal” ⇔ black body radiation from hot medium
 - partonic and/or hadronic medium
 - expected at low p_T on top of huge background
 - “direct” ⇔ photons from initial state hard scattering
 - Compton scattering dominates, i.e. probe for gluon distribution
 - calculable in pQCD
 - no fragmentation of photon!
 - photon “shines through” hot and dense medium!

- direct photons “calibrate” hard scattering processes
 ⇒ IDEAL CONTROL EXPERIMENT FOR JET SUPPRESSION!

- how-to measure direct photons
 - subtraction of “background” photons (WA98 / PHENIX)
 - photon correlations (WA98 talk by D. Peressounko)
Direct photons from 200 GeV pp collisions

- evaluation of excess above background: double ratio
 - $\frac{\gamma/\pi^0_{\text{measured}}}{\gamma/\pi^0_{\text{background}}} \rightarrow \frac{\gamma_{\text{measured}}}{\gamma_{\text{background}}}$
- (small) direct photon signal observed!
 (PHENIX talk by J. Frantz, posters by G. David, K. Reygers, T. Sakaguchi)

R. Averbeck, SUNY Stony Brook

2004
Direct photons from 200 GeV pp collisions

- evaluation of excess above background: double ratio

\[\frac{[\gamma/\pi]_{\text{measured}}}{[\gamma/\pi]_{\text{background}}} \rightarrow \frac{\gamma_{\text{measured}}}{\gamma_{\text{background}}} \]

- (small) direct photon signal observed!

(PHENIX talk by J. Frantz, posters by G. David, K. Reygers, T. Sakaguchi)

R. Averbeck, SUNY Stony Brook
Direct photons from 200 GeV AuAu collisions

- strong suppression of high p_T pions in central AuAu collisions
- VERY significant background reduction!
Comparison with NLO pQCD calculation

- nice agreement with unsuppressed, binary scaled pp NLO pQCD calculation!
Direct photons: centrality dependence

\[\frac{\gamma}{\pi^0}_{\text{measured}} / \frac{\gamma}{\pi^0}_{\text{sim}} = 1 + \left(\frac{\gamma_{\text{pQCD}} \times N_{\text{coll}}}{\gamma_{\text{phenix background}}} \right) \]

PHENIX Preliminary PbGI / PbSc Combined

80-92% Central AuAu 200 GeV

- Vogelsang NLO

R. Averbeck, SUNY Stony Brook
Direct photons: centrality dependence

PHENIX Preliminary PbGl / PbSc Combined
70-80% Central AuAu 200 GeV

\[1 + \left(\gamma_{pQCD} \times N_{\text{coll}} \right) / \gamma_{\text{phenix backgrd}} \] Vogelsang NLO

\(\frac{(\gamma / \pi^0)_{\text{measured}}}{(\gamma / \pi^0)_{\text{sim}}} \) vs. \(p_T \) (GeV/c)
Direct photons: centrality dependence

\begin{align*}
\frac{\gamma/\pi^0}{\text{measured}} &= 1 + \frac{\gamma_{\text{QCD}} \times N_{\text{coll}}}{\gamma_{\text{phenix background}}} \\
\text{Vogelsang NLO}
\end{align*}
Direct photons: centrality dependence

\[
1 + \frac{\gamma_{\text{QCD}} \times N_{\text{coll}}}{\gamma_{\text{phenix backgrd}}} \]

\[
\text{PHENIX Preliminary PbGl / PbSc Combined 50-60\% Central AuAu 200 GeV}
\]

\[
\begin{align*}
\text{(\gamma/\pi^0)_\text{measured} / (\gamma/\pi^0)_\text{sim}}
\end{align*}
\]

R. Averbeck, SUNY Stony Brook
Direct photons: centrality dependence

\[1 + \left(\frac{\gamma_{pQCD} \times N_{\text{coll}}}{\gamma_{\text{phenix backgrd}}} \right) \]

PHENIX Preliminary PbGl / PbSc Combined
40-50% Central AuAu 200 GeV

Vogelsang NLO

\[\frac{\langle \gamma/T^0 \rangle_{\text{measured}}}{\langle \gamma/T^0 \rangle_{\text{sim}}} \]
Direct photons: centrality dependence

\[1 + \left(\gamma_{pQCD} \times N_{\text{col}} \right) / \gamma_{\text{phenix backgrd}} \]

Vogelsang NLO

PHENIX Preliminary PbGj / PbSc Combined

30-40% Central AuAu 200 GeV
Direct photons: centrality dependence

\[\frac{\gamma}{\pi^0} \text{measured} / \frac{\gamma}{\pi^0} \text{sim} \]

PHENIX Preliminary PbGl / PbSc Combined

20-30% Central AuAu 200 GeV

\[1 + \left(\gamma_{pQCD} \times N_{\text{coll}} \right) / \gamma_{\text{phenix backgrd}} \]

Vogelsang NLO
Direct photons: centrality dependence

\[\frac{(\gamma / \pi^0)}{\text{measured}} / \frac{(\gamma / \pi^0)}{\text{sim}} = 1 + \frac{\gamma_{\text{pQCD}} \times N_{\text{coll}}}{\gamma_{\text{phenix backgrd}}} \]

10-20% Central 200 GeV AuAu

Vogelsang NLO
Direct photons: centrality dependence

- direct photons are not inhibited by hot/dense medium and shine through consistent with pQCD!

thermal photons: reduction of systematic uncertainties is essential!!

R. Averbeck, SUNY Stony Brook
Another hard probe: heavy flavor production

- a (very) complex playground
 - cc production in hard scattering
 - sensitive to PDF
 - propagation
 - hadronization
- medium modifications
 - modification of PDF in nuclei (shadowing, antishadowing)
 - multiple scattering $\Rightarrow p_T$ broadening
 - initial state parton energy loss
 - charmonia:
 - “normal” nuclear absorption
 - “anomalous” suppression ("Debye" screening)
 - enhancement via "coalescence"?
 - additional “thermal” production?
 - energy loss by induced gluon radiation? “Dead-cone effect”?
 - how to disentangle this?
- measure charmonium states and open charm
 - in pp, pA, AA collisions
 - in various kinematic regions
 - at various energies
 - news from SPS
 - news from RHIC

R. Averbeck, SUNY Stony Brook
J/ψ suppression in PbPb at SPS

- updated analysis of J/ψ (and ψ’) absorption in cold nuclear matter (NA50 pA run at 400 GeV (2000) + combined fit of ALL data sets) (NA50 talk by G. Borges)
- \(\sigma_{\text{J/ψ}}^{\text{abs}} = 4.3 \pm 0.3 \text{ mb} \)
- J/ψ suppression with respect to this expected “normal” nuclear absorption (relative to Drell-Yan): a familiar pattern
- what is new?
 - \(\psi' \) measurement
 - challenging because of
 - small dimuon cross section
 - small S/B
 - large suppression (weaker bound state than J/ψ)
\(\psi' \) suppression at SPS

- NA50 talk by H. Santos
- \(\psi' \) absorption in pA is stronger than J/\(\psi \) absorption
- significantly stronger absorption in AA going from peripheral to central collisions
- no apparent difference in absorption pattern between SU and PbPb collisions

\[\sigma_0 e^{-\langle \rho L \rangle \sigma_{abs}} \]

- \(\psi' \) suppression relative to Drell-Yan and J/\(\psi \) increases with centrality in PbPb collisions
Open questions at SPS

- what fraction of J/ψ comes from χ_c feed down ($\chi_c \rightarrow J/\psi + \gamma$)?
- what is the nuclear dependence of χ_c production/absorption in pA?
- is open charm enhanced in AA?

will be answered by NA60

- χ_c measurement at HERA-B (huge statistics dilepton data sample from pA collisions at $\sqrt{s_{NN}} = 42$ GeV)
 (HERA-B talks by J. Spengler, A. Gorisek)

$\chi_c/J/\psi = 0.21 \pm 0.05$

from 15% of available statistics
J/ψ suppression / enhancement at RHIC?

- **PHENIX: preparing the case**

<table>
<thead>
<tr>
<th>Year</th>
<th>Ions</th>
<th>(\sqrt{s_{NN}})</th>
<th>Detectors</th>
<th>J/ψ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>Au-Au</td>
<td>130 GeV</td>
<td>Central (electrons)</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>Au-Au</td>
<td>200 GeV</td>
<td>Central</td>
<td>13 + 0</td>
</tr>
<tr>
<td>2002</td>
<td>p-p</td>
<td>200 GeV</td>
<td>+ 1 muon arm</td>
<td>46 + 66</td>
</tr>
<tr>
<td>2002</td>
<td>d-Au</td>
<td>200 GeV</td>
<td>Central</td>
<td>300+800+600</td>
</tr>
<tr>
<td>2003</td>
<td>p-p</td>
<td>200 GeV</td>
<td>+ 2 muon arms</td>
<td>100+300+120</td>
</tr>
<tr>
<td>2004</td>
<td>Au-Au</td>
<td>200 GeV</td>
<td>! ready !</td>
<td>~400+2x1600</td>
</tr>
</tbody>
</table>

- **QM2002** first observation
- **QM2004** first sizeable pp & dAu samples

study J/ψ modifications in cold nuclear medium

R. Averbeck, SUNY Stony Brook
J/ψ in dAu collisions at RHIC

- J/ψ produced by gluon fusion
- Sensitivity to gluon pdf
- 3 rapidity ranges in PHENIX probe different momentum fraction of Au partons
 - South (y < -1.2) : large X_2 (in gold)
 - Central (y ~ 0) : intermediate
 - North (y > 1.2) : small X_2 (in gold)

From Eskola, Kolhinen, Vogt
J/ψ in pp and dAu collisions at RHIC

- rapidity distributions: improved pp / first dAu measurements

PHENIX talk by R. G. de Cassagnac, posters: J.M. Burward-Hoy, S. Kametani, D. Kim, D. Silvermyr

R. Averbeck, SUNY Stony Brook
J/ψ dAu/pp versus rapidity at RHIC

- indication for (weak) shadowing and absorption
- centrality dependence studied as well!
- more statistics desirable to disentangle nuclear effects (and distinguish models)
J/ψ dAu/pp versus rapidity at RHIC

- Indication for (weak) shadowing and absorption
- Centrality dependence studied as well!
- More statistics desirable to disentangle nuclear effects (and distinguish models)
J/ψ dAu/pp versus rapidity at RHIC

STAGE IS SET

Look forward to high statistics AuAu run!

- indication for (weak) shadowing and absorption
- centrality dependence studied as well!
- more statistics desirable to disentangle nuclear effects (and distinguish models)
Open charm: reference and probe

- physics motivation for open charm measurements
 - reference for J/ψ suppression / enhancement
 - production mainly via gluon fusion ⇒ interesting probe itself
 - sensitive to gluon structure function (and nuclear modification of this)
 - heavy quark energy loss
 - induced gluon radiation
 - “dead cone” effect
 - does charm flow?

- open charm measurements at RHIC

 direct reconstruction

 ideal, difficult in HI, doable

 200 GeV dAu: STAR (mb)

 indirect measurements

 electrons from semileptonic decays

 130 GeV AuAu: PHENIX (cent.)
 200 GeV pp: PHENIX & STAR
 200 GeV dAu: PHENIX (cent.) & STAR (mb)
 200 GeV AuAu: PHENIX (cent)
First direct charm measurement (STAR)

- reconstruction of D mesons in minimum bias dAu collisions
 - D^0
 - $D^±$
 - D^*

- STAR talks by A. Tai, L. Ruan, A. Suaide

\[
\sigma_{c\bar{c}}^{NN} = 1.12 \pm 0.20 \pm 0.37 \text{ mb from D data}
\]
\[
(1.36 \pm 0.20 \pm 0.39 \text{ mb with electrons})
\]
Open charm in pp: the baseline

- two single electron measurements

\[\sigma_{cc} = 709 \, \mu b \pm 85_{\text{stat}} \pm 332_{\text{sys}} \]

- three methods to subtract photonic background (PHENIX talk by S. Kelly)

- three methods to identify electrons (STAR talk by A. Suaide)

- charm cross sections (barely) agree!

R. Averbeck, SUNY Stony Brook
Consistency between electron data sets

\(\frac{e^+ + e^-}{2} \)

PHENIX

\(E \frac{d^3 \sigma}{dp^3} \) [mb GeV^2/c^3]

\(p_T \) [GeV/c]
Consistency between electron data sets

\[\frac{(e^+ + e^-)}{2} \]

- PHENIX
- STAR TOF

\[E \frac{d\sigma^3}{dp^3} \text{[mb GeV}^2/c^3] \]

\[p_T \text{[GeV/c]} \]
Consistency between electron data sets

\[\frac{(e^+ + e^-)}{2} \]

- PHENIX
- STAR TOF
- STAR EMC

\[E d^3N/dp^3 \text{ [mb GeV}^2/c^3] \]

\[p_T \text{ [GeV/c]} \]

R. Averbeck, SUNY Stony Brook
Consistency between electron data sets

\[\frac{(e^+ + e^-)}{2} \]

- PHENIX
- STAR TOF
- STAR EMC
- STAR D2e

\[E \frac{d\sigma}{dp^3} \text{ [mb GeV}^2 c^3] \]

\[p_T \text{ [GeV/c]} \]
Consistency between electron data sets

- STAR systematically (slightly) above PHENIX
- beware: error bars are meant to be taken seriously!

R. Averbeck, SUNY Stony Brook
Does the PYTHIA extrapolation work?

- PYTHIA tuned to available data ($\sqrt{s_{NN}} < 63$ GeV) BEFORE RHIC results

PHENIX PRELIMINARY

- spectra are harder than PYTHIA extrapolation from low energies! (hard fragmentation function, charm quark recombination ...?)
- PYTHIA can’t be used to extract bottom cross section!
- bottom measurement requires PRECICE D measurement first!
Centrality dependence in dAu (PHENIX)

Single electrons from non-photonic sources agree well with pp fit and binary scaling (posters: S. Butsyk, X. Li)

R. Averbeck, SUNY Stony Brook
Centrality dependence in dAu (PHENIX)

- single electrons from non-photonic sources agree well with pp fit and binary scaling (posters: S. Butsyk, X. Li)

R. Averbeck, SUNY Stony Brook
Centrality dependence in AuAu (PHENIX)

- uncertainties too large for definite statements regarding (small) deviations from binary scaled pp results (poster: T. Hachiya)

R. Averbeck, SUNY Stony Brook
Binary collision scaling in AuAu (PHENIX)

- binary collision scaling of pp result works VERY WELL for non-photonic electrons in AuAu (PHENIX talk by S. Kelly)
- open charm is a good CONTROL, similar to direct photons!
Binary collision scaling in AuAu (PHENIX)

- Binary collision scaling of pp result works VERY WELL for non-photonic electrons in AuAu (PHENIX talk by S. Kelly)
- Open charm is a good CONTROL, similar to direct photons!

\[
\frac{dN}{dy} = A \left(N_{\text{coll}} \right)^{\alpha}
\]

Integrated 0.8 < \(p_t\) < 4.0 (GeV/c)

0.906 < \(\alpha\) < 1.042
Does charm flow?

- is partonic flow realized?
- v_2 of non-photonic electrons indicates non-zero charm flow in AuAu collisions
- uncertainties are large
- definite answer: AuAu RUN-04 at RHIC!

PHENIX poster by S. Sakai
Summary

- low and intermediate-mass dileptons
 - looking forward to
 - solutions of SPS puzzles
 - data from RHIC
- direct photons as jet control measurement
 - pQCD at work
- charmonia
 - improvements at SPS
 - preparing the reference for RHIC
- open charm
 - a second player joined the game
- what next?
 - LUMINOSITY!!
 - back to work