Improving our knowledge on antiquark polarized distributions studying Own Theory Overview: W Physics at RHIC

Daniel de Florian Universidad de Buenos Aires, Argentina

RHIC SPIN : Next Decade Berkeley, Nov. 20-22 2009 One (big) Purpose of spin program: obtain a full set of polarized pdfs information about nucleon polarization

Requires measurement and analysis of several processes

sensitive to different combinations

PDFs obtained as a result of a global fit

learn from unpolarized pd/pp DY experiments designed for $\frac{\bar{u}}{\bar{d}}$ measurement

DSSV analysis

Still not negligible uncertainty on antiquark polarized densities

Uncertainties using Lagrangian method : truncated moment [0.001 - 1]

(almost) All information comes from SIDIS ...

$$g_1^h(x, z, Q^2) = \frac{1}{2} \sum_q e_q^2 \left[\Delta q(x, Q^2) Dq^h(z, Q^2) + \Delta \bar{q}(x, Q^2) D\bar{q}^h(z, Q^2) \right]$$

q/qbar separation (fully) depends on fragmentation functions DSS

DdF., R.Sassot, M.Stratmann

Separation of FFs (fully) depends on SIDIS (Hermes multiplicities)!

Hermes data preliminary

Effects beyond factorization?

Relies on knowledge of unpolarized PDFs

Any modification in unpolarized PDFs affects FFs extraction $s(x) \to D_s^K(z) \to \Delta s(x)$

Difficult to quantify those "uncertainties"

Need a cleaner observable for antiquark density measurement

W single-spin asymmetries

If parity violated can have $A_L = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} \neq 0$

• W couples only to one helicity type: max. parity violation

• Large asymmetries possible

• W mass provides hard scale: pQCD

Only one polarized beam

$$A_L = \frac{\sigma^{++} + \sigma^{+-} - \sigma^{-+} - \sigma^{--}}{\sigma^{++} + \sigma^{+-} + \sigma^{-+} + \sigma^{--}}$$

 $\frac{\Delta q_i(x_1) q_j(x_2)}{q_i(x_1) q_j(x_2)}$

W single-spin asymmetries

Lepton affects both kinematics and dynamics

Will need reasonably high statistics to 'compete' with SIDIS

Bourrelly Soffer estimate for 800 pb⁻¹

Important : No "full" NLO calculation available yet RhicBos has several NLO ingredients plus some extra terms (qt-resummation) not needed/not convenient for RHIC

> Makes technically difficult to include the observable in global fit

Need to count with a new calculation $\sigma(pp \rightarrow e\bar{\nu}X)$

- Exclusive to implement experimental cuts
- "Ready/Available" for Mellin implementation
- Full NLO in line with other observables already in fit

We have just finished the computation and implemented it in a MonteCarlo-like code (in the same line as dijets and h+jet codes) de F., Vogelsang

Full access to final and initial state kinematics : compute any infrared-safe observable

New channels at NLO

W-

Some diagrams ..

Rather simple to use

'test'	! prefix for files		
500.d0 I.d0	! energy, fact/renorm. scalefactor		
0	! polarization 0(unpol) 1 (single pol) 2(double pol)		
-1	! Charge of the final state W		
	! Hadron beams p=1 pbar=-1		
46	! set of pdfs beam I		
46	! set of pdfs beam 2 =1 if lpol=0 or 2		
-60 -60	! Number of iterations for vegas (LO, NLO)		
2 2	!Vegas parameters: 0 to exclude, 1 for new run, 2 to restart		
250000 1500000	! Number of calls for vegas		

Can use different pdfs, scales, etc

Define observable (bin cross-section) in "user file" : output in topdrawer file

subroutine outfun(www)

c This is the user analysis routine. It is called for each generated event with the parameter www: weight of the event

c The kinematic of each particle is given by

- xkt(i)=modulus of the transverse momentum of particle # i in GeV С
- xeta(i)=pseudorapidity of particle # i С
- xphi(i)=azimuthal angle of particle # i С
- xkt(i),xeta(i),xphi(i) correspond to С
- i=l iet С С
 - i=2 lepton
- i=3 neutrino С С
 - (i=4 W boson as e+nu)
- c The rapidity is POSITIVE in the direction of beam I
- С

С

- To fill the histograms, use С
- topfill(hn,x,weight) С

c where:

- hn = histogram number С
- x = x value С
- c weight = weight of the event

Available soon ... (manual & paper in preparation)

One more thing

Experiments measure lepton : other processes contribute to the cross section

$$pp \xrightarrow{Z/\gamma} e^- e^+$$
 to both W^- , W^+

 Z/γ increases the unpolarized cross section

New Code de F., Vogelsang

Z (PV component) contributes to single-spin cross section

Electron/positron Asymmetries

- NLO
- Include Z/Gamma contribution
- MRST for unpolarized
- Various polarized pdfs (some already ruled out)

$$\sqrt{S} = 500 \,\text{GeV}$$
$$\mu_F^2 = \mu_R^2 = \frac{M_W^2 + p_T^2}{2}$$
$$M_W = 80.398 \,\text{GeV}$$

 $M_Z = 91.876\,\mathrm{GeV}$

couplings from PDG

'Better' observable than transverse momentum p_T integration get rid off problem at $M_W/2$

 $\hat{t}^2 \sim (1 + \cos\theta)^2$ $\hat{u}^2 \sim (1 - \cos\theta)^2$

angular momentum conservation

Best scenario: polarized antiquark contribution dominant at central/negative rapidity (small x)

Strong sensitivity on $\Delta \bar{u}$

Transverse momentum distribution picks up the "normalization": integral over covered range of x

Shape not much determined by pdfs

W+ (positron rapidity)

polarized antiquark contribution dominant at central/positive rapidity (larger x)

$$\Delta \bar{d}(x_1)u(x_2)(\hat{u}^2) + \Delta u(x_1)\bar{d}(x_2)(-\hat{t}^2)$$

Not that much sensitivity on Δd need to look at forward rapidities

Include some "data" in global fit and check impact on distributions

Global fit best in Mellin space : very fast solution of evolution equations and cross-sections (DIS,SIDIS)

$$f^n = \int dz \ z^{n-1} f(z)$$

$$d\Delta\sigma(pp \to l) = \frac{1}{2\pi i} \sum_{ab} \int_{\mathcal{C}_n} dn \Delta f_a^n \int dx_a \int dx_b x_a^{-n} f_b(x_b) d\Delta\sigma_{ab}$$

Standard
Nellin
Inverse
Standard
pdfs
Contains all
dependence
on polarized
pdfs
Completely independent
on polarized pdfs : can be
"pre-calculated" prior to fit

$$(d\Delta\sigma_{ab})_n = \int dx_a \int dx_b \, x_a^{-n} \, f_b(x_b) d\Delta\sigma_{ab} \qquad \text{still PS integrals}$$

First time with a MC code!

'Grids' produced for rapidity bins of size 0.33 (added to match exp. conditions)

Parametrization:
$$x\Delta f_j(x, Q_0^2) = N_j x^{\alpha_j} (1-x)^{\beta_j} (1+\gamma_j \sqrt{x}+\eta_j x)$$

0 for sea/gluon node allowed

Data Simulation

pseudodata generated according to DSSV with gaussian dispersion with $\epsilon = \frac{1}{P\sqrt{\mathcal{L}\sigma}}$ P = 60%

Different scenarios

Rapidity	STAR	'Phenix'
RHIC	$ \eta < 1$	$ \eta < 0.35$
RHIC '2'	$ \eta < 2$	$1 < \eta < 2 \ \mbox{and} \ \eta < 0.35$

Luminosity
$$\mathcal{L} = 200 \,\mathrm{pb}^{-1}$$

 $\mathcal{L} = 800 \,\mathrm{pb}^{-1}$

$$\Delta \chi^2 = 2\% \, \chi^2$$

Include W data (present rapidity coverage)

Strong reduction in uncertainty band at x > 0.05

Effect at smaller x with larger rapidity coverage (ubar)

Larger luminosity : moderate effect

simulated data: rapidity more relevant than luminosity? Not likely with real data!

Effect of uncertainties on antiquark distributions over asymmetries

pretty good at x>0.07 but lack of resolution at smaller x

What about double spin asymmetries ?

$$A_{LL} = \frac{\sigma^{++} + \sigma^{--} - \sigma^{-+} - \sigma^{+-}}{\sigma^{++} + \sigma^{--} + \sigma^{-+} + \sigma^{+-}}$$
$$\frac{\Delta q_i}{q_i} \frac{\Delta \bar{q}_j}{\bar{q}_j}$$

smaller but different combination

Summary (good news)

✓ Full NLO calculation for W asymmetries

✓ Includes Z/Gamma contribution

✓ Can be included in Global Fit (Mellin grids)

✓ First (realistic) analysis with 'simulated' data

 \checkmark W asymmetries clearly help to constrain $~\Delta \bar{u}~,~\Delta \bar{d}~~x\gtrsim 0.05$

During next decade : Confront/Compete/Check/Replace SIDIS ! (in some kinematical range)

