Today we will continue to discuss physics of color, from a complementary perspective

"eRHIC"

Physics of Lepton-Ion Collisions

Ernst Sichtermann

The Berkeley School 2014

Consider (electro-)production of muons and "hadrons",

$$
\begin{aligned}
& e^{+}+e^{-} \rightarrow \mu^{+}+\mu^{-} \\
& e^{+}+e^{-} \rightarrow q+\bar{q}
\end{aligned}
$$

The same diagram!
Now, consider the cross-section ratio:

$$
R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=n_{\text {color }} \sum_{\text {flavor }} Q_{f}^{2}
$$

as a function of energy.
For the three light flavors,

$$
R=n_{\text {color }}\left[\left(\frac{2}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}\right]=n_{\text {color }} \cdot \frac{2}{3}=2
$$

Between the charm and beauty threshold,

$$
R=n_{\text {color }}\left[\left(\frac{2}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}\right]=\frac{10}{9} \cdot n_{\text {color }}
$$

Data:

Data:

What about the fractional charges?
What about spin?

Much of the next ~ 75 mins will be about:

Physics with Lepton-Ion Collisions

4.Deepinelastic Scattering

2. Applications at RHIC

अ1\%

Towards an E.c

2. Applications at RHIC

I - Deep-Inelastic Scattering

Scattering off a hard sphere; $r_{\text {nucleus }} \sim\left(10^{-4} . r_{\text {atom }}\right) \sim 10^{-14} \mathrm{~m}$

~200 MeV
 Elastic Electron Scattering

Robert Hofstadter, Nobel Prize 1961

Scattering off a spin-1/2 Dirac particle:

$$
\frac{d \sigma}{d \Omega}=\left(\frac{\alpha}{4 M E \sin ^{2}(\theta / 2)}\right)^{2} \frac{E^{\prime}}{E}\left[\frac{q^{2}}{2 M} \sin ^{2}(\theta / 2)+\cos ^{2}(\theta / 2)\right]
$$

The proton has an anomalous magnetic moment,

$$
g_{p} \neq 2, \quad g_{p} \simeq 5.6
$$

and, hence, internal (spin) structure.

Elastic Electron Scattering

$$
\left.\left.d \sigma \propto\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{g_{e}^{4}}{q^{4}} L_{\text {lepton }}^{\mu \nu} K_{\mu \nu \text { nucleon }}
$$

The lepton tensor is calculable:

$$
L_{\text {lepton }}^{\mu \nu}=2\left(k^{\mu} k^{\prime \nu}+k^{\nu} k^{\prime \mu}+g^{\mu \nu}\left(m^{2}-k \cdot k^{\prime}\right)\right)
$$

The nucleon tensor is not; it's general (spin-averaged, parity conserved) form is:

$$
K_{\mu \nu \text { nucleon }}=-K_{1} g_{\mu \nu}+\frac{K_{2}}{M^{2}} p_{\mu} p_{\nu}+\frac{K_{4}}{M^{2}} q_{\mu} q_{\nu}+\frac{K_{5}}{M^{2}}\left(p_{\mu} q_{\nu}+p_{\nu} q_{\mu}\right)
$$

Charge conservation at the proton vertex reduces the number of structure functions:

$$
q_{\mu} K_{\text {nucleon }}^{\mu \nu} \quad \rightarrow \quad K_{4}=f\left(K_{1}, K_{2}\right), \quad K_{5}=g\left(K_{2}\right)
$$

and one obtains the Rosenbluth form, with electric and magnetic form factors:

$$
\frac{d \sigma}{d \Omega}=\left(\frac{\alpha}{4 M E \sin ^{2}(\theta / 2)}\right)^{2} \frac{E^{\prime}}{E}\left[2 K_{1} \sin ^{2}(\theta / 2)+K_{2} \cos ^{2}(\theta / 2)\right], \quad K_{1,2}\left(q^{2}\right)
$$

Inelastic Scattering

Considerably more complex, indeed!

Simplify - consider inclusive inelastic scattering,

$$
\left.\left.d \sigma \propto\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{g_{e}^{4}}{q^{4}} L_{\text {lepton }}^{\mu \nu} W_{\mu \nu \text { nucleon }}, \quad W_{\mu \nu \text { nucleon }}(p, q)
$$

Again, two (parity-conserving, spin-averaged) structure functions:

$$
W_{1}, W_{2} \text { or, alternatively expressed, } F_{1}, F_{2}
$$

which may depend on two invariants,

$$
Q^{2}=-q^{2}, \quad x=-\frac{q^{2}}{2 q \cdot p}, 0<x<1
$$

So much for the structure, the physics is in the structure functions.

Inelastic Scattering

Simplify - consider inclusive inelastic scattering,

$$
\left.\left.d \sigma \propto\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{g_{e}^{4}}{q^{4}} L_{\text {lepton }}^{\mu \nu} W_{\mu \nu \text { nucleon }}
$$

Then forget this talk, and calculate this!
$W_{\mu \nu \text { nucleon }}(p, q)$

Again, two (parity-conserving, spin-averaged) structure functions:

$$
W_{1}, W_{2} \text { or, alternatively expressed, } F_{1}, F_{2}
$$

which may depend on two invariants,

$$
Q^{2}=-q^{2}, \quad x=-\frac{q^{2}}{2 q \cdot p}, 0<x<1
$$

So much for the structure, the physics is in the structure functions.

Inelastic Scattering

Considerably more complex, indeed!

Simplify - consider inclusive inelastic scattering,

$$
\left.\left.d \sigma \propto\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{g_{e}^{4}}{q^{4}} L_{\text {lepton }}^{\mu \nu} W_{\mu \nu \text { nucleon }}, \quad W_{\mu \nu \text { nucleon }}(p, q)
$$

Again, two (parity-conserving, spin-averaged) structure functions:

$$
W_{1}, W_{2} \text { or, alternatively expressed, } F_{1}, F_{2}
$$

which may depend on two invariants,

$$
Q^{2}=-q^{2}, \quad x=-\frac{q^{2}}{2 q \cdot p}, 0<x<1
$$

So much for the structure, the physics is in the structure functions.

Elastic scattering off Dirac Protons

Compare:

$$
L_{\text {lepton }}^{\mu \nu}=2\left(k^{\mu} k^{\prime \nu}+k^{\nu} k^{\prime \mu}+g^{\mu \nu}\left(m^{2}-k \cdot k^{\prime}\right)\right)
$$

with:

$$
K_{\mu \nu \text { nucleon }}=K_{1}\left(-g_{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right)+\frac{K_{2}}{M^{2}}\left(p^{\mu}+\frac{1}{2} q^{\mu}\right)\left(p^{\nu}+\frac{1}{2} q^{\nu}\right)
$$

which uses the relations between $K_{1,2}$ and $K_{4,5}$
Then, e.g. by substitution of $k^{\prime}=k-q$ in L :

$$
K_{1}=-q^{2}, \quad K_{2}=4 M^{2}
$$

Note, furthermore, that inelastic cross section reduces to the elastic one for:

$$
W_{1,2}\left(q^{2}, x\right)=-\frac{K_{1,2}\left(q^{2}\right)}{2 M q^{2}} \delta(x-1)
$$

Elastic scattering off Dirac Partons

Imagine incoherent scattering off Dirac Partons (quarks) q :

$$
W_{1}^{q}=\frac{e_{q}^{2}}{2 m_{q}} \delta\left(x_{q}-1\right), \quad W_{2}^{q}=-\frac{2 m_{q} e_{q}^{2}}{q^{2}} \delta\left(x_{q}-1\right) \quad \text { and } x_{q}=-\frac{q^{2}}{2 q \cdot p_{q}}
$$

and, furthermore, suppose that the quarks carry a fraction, z, of the proton momentum

$$
p_{q}=z_{q} p, \quad \text { so that } x_{q}=\frac{x}{z_{q}} \quad\left(\text { also note } m_{q}=z_{q} M!\right)
$$

which uses the relations between $K_{1,2}$ and $K_{4,5}$
Now,

$$
\begin{aligned}
M W_{1} & =M \sum_{q} \int_{0}^{1} \frac{e_{q}^{2}}{2 M} \delta\left(x-z_{q}\right) f_{q}\left(z_{q}\right) d z_{q}=\frac{1}{2} \sum_{q} e_{q}^{2} f_{q}(x) \equiv F_{1}(x) \\
-\frac{q^{2}}{2 M x} W_{2} & =\sum_{q} \int_{0}^{1} x e_{q}^{2} \delta\left(x-z_{q}\right) f_{q}\left(z_{q}\right) d z_{q}=x \sum_{q} e_{q}^{2} f_{q}(x) \equiv F_{2}(x)
\end{aligned}
$$

Two important observable consequences,
Bjorken scaling:

$$
F_{1,2}(x), \operatorname{not} F_{1,2}\left(x, Q^{2}\right)
$$

Callan-Gross relation: $\quad F_{2}=2 x F_{1}(x)$

Elastic scattering off Dirac Partons

Imagine incoherent scattering off Dirac Partons (quarks) q :

$$
W_{1}^{q}=\frac{e_{q}^{2}}{2 m_{q}} \delta\left(x_{q}-1\right), \quad W_{2}^{q}=-\frac{2 m_{q} e_{q}^{2}}{q^{2}} \delta\left(x_{q}-1\right) \quad \text { and } x_{q}=-\frac{q^{2}}{2 q \cdot p_{q}}
$$

and, furthermore, suppose that the quarks carry a fraction, z, of the proton momentum

$$
p_{q}=z_{q} p, \quad \text { so that } x_{q}=\frac{x}{z_{q}} \quad\left(\text { also note } m_{q}=z_{q} M!\right)
$$

which uses the relations between $K_{1,2}$ and $K_{4,5}$
Now,

$$
\begin{aligned}
M W_{1} & =M \sum_{q} \int_{0}^{1} \frac{e_{q}^{2}}{2 M} \delta\left(x-z_{q}\right) f_{q}\left(z_{q}\right) d z_{q}=\frac{1}{2} \sum_{q} e_{q}^{2} f_{q}(x) \equiv F_{1}(x) \\
-\frac{q^{2}}{2 M x} W_{2} & =\sum_{q} \int_{0}^{1} x e_{q}^{2} \delta\left(x-z_{q}\right) f_{q}\left(z_{q}\right) d z_{q}=x \sum_{q} e_{q}^{2} f_{q}(x) \equiv F_{2}(x)
\end{aligned}
$$

Two important observable consequences,
Bjorken scaling:

$$
F_{1,2}(x), \operatorname{not} F_{1,2}\left(x, Q^{2}\right)
$$

Callan-Gross relation: $\quad F_{2}=2 x F_{1}(x)$

Elastic scattering off Dirac Partons

Imagine incoherent scattering off Dirac Partons (quarks) q :

$$
\left.W_{1}^{q}=\frac{e_{q}^{2}}{2 m_{q}} \quad{ }_{q}-1\right), \quad W_{2}^{q}=-\frac{2 m_{q} e_{q}^{2}}{q^{2}} \delta\left(x_{q}-1\right) \quad \text { and } x_{q}=-\frac{q^{2}}{2 q \cdot p_{q}}
$$

and, furthermore uppose that the quarks carry a fraction, z, of the proton momentum

$$
p_{q}=z_{q} p, \quad \text { that } x_{q}=\frac{x}{z_{q}} \quad\left(\text { also note } m_{q}=z_{q} M!\right)
$$

which uses the r tions between $K_{1,2}$ and $K_{4,5}$
Now,

$$
\begin{aligned}
M W_{1} & =\sum_{q} \int_{0}^{1} \frac{e_{q}^{2}}{2 M} \delta\left(x-z_{q}\right) f_{q}\left(z_{q}\right) d z_{q}=\frac{1}{2} \sum_{q} e_{q}^{2} f_{q}(x) \equiv F_{1}(x) \\
-\frac{q^{2}}{2 M x} W_{2} & =
\end{aligned} \int_{0}^{1} x e_{q}^{2} \delta\left(x-z_{q}\right) f_{q}\left(z_{q}\right) d z_{q}=x \sum_{q} e_{q}^{2} f_{q}(x) \equiv F_{2}(x),
$$

Two important observable consequences,
Bjorken scaling:

$$
F_{1,2}(x), \operatorname{not} F_{1,2}\left(x, Q^{2}\right)
$$

Callan-Gross relation: $\quad F_{2}=2 x F_{1}(x)$

~10 GeV Deep-Inelastic Electron Scattering

Scattered electron is deflected by a known B-field and a fixed vertical angle:
determine E^{\prime}

Spectrometer can rotate in the horizontal plane, vary θ

~10 GeV Deep-Inelastic Electron Scattering

e.g. J.T.Friedman and H.W. Kendall, Ann.Rev.Nucl.Sci. 22 (1972) 203

Deep-Inelastic Electron Scattering

Bjorken scaling:

R. Taylor Nobel Prize 1990

H.W. Kendall

Point particles cannot be further resolved; their measurement does not depend on wavelength, hence Q^{2},

Spin-1/2 quarks cannot absorb longitudinally polarized vector bosons and, conversely, spin-0 (scalar) quarks cannot absorb transversely polarized photons.

Callan-Gross relation:

Deep-Inelastic Neutrino Scattering

Several of you may recognize this picture from CERN...

Gargamelle bubble chamber, observation of weak neutral current (1973).

Charged-current DIS!

Nucl.Phys. B73 (1974) 1
Nucl.Phys. B85 (1975) 269
Nucl.Phys. B118 (1977) 218
Phys.Lett. B74 (1978) 134

Deep-Inelastic Scattering - Fractional Electric Charges

Neutral-current (photon) DIS:

$$
\begin{aligned}
& F_{2}=x \sum e_{q}^{2}(q+\bar{q}), \quad p: u u d, \quad n: d d u \\
& F_{2}^{N}=x \frac{e_{u}^{2}+e_{d}^{2}}{2}(u+\bar{u}+d+\bar{d})
\end{aligned}
$$

Charged-current DIS:

$$
\begin{aligned}
& F_{2}^{\nu p}=2 x(d+\bar{u}), \quad F_{2}^{\nu n}=2 x(u+\bar{d}) \\
& F_{2}^{\nu N}=x(u+\bar{u}+d+\bar{d})
\end{aligned}
$$

Deep-Inelastic Scattering - Fractional Electric Charges

Neutral-current (photon) DIS:

$$
\begin{aligned}
& F_{2}=x \sum e_{q}^{2}(q+\bar{q}), \quad p: u u d, \quad n: d d u \\
& F_{2}^{N}=x \frac{e_{u}^{2}+e_{d}^{2}}{2}(u+\bar{u}+d+\bar{d})
\end{aligned}
$$

Ratio:

$$
\frac{F_{2}^{N}}{F_{2}^{\nu N}}=\frac{1}{2}\left(e_{u}^{2}+e_{d}^{2}\right)=\frac{5}{18} \simeq 0.28
$$

Deep-Inelastic Scattering - Valence and Sea Quarks

Charged-current DIS:

$$
\begin{gathered}
F_{2}^{\nu}=2 x \sum(q+\bar{q}) \\
x F_{3}^{\nu N}=2 x \sum(q-\bar{q}) \\
\int_{0}^{1} x F_{3}^{\nu \mathrm{N}} \frac{d x}{x}=\int_{0}^{1}\left(u_{v}+d_{v}\right) d x
\end{gathered}
$$

Gross Llewellyn-Smith: 3
Gargamelle:
$3.2+/-0.6$

Deep-Inelastic Scattering - Valence and Sea Quarks

Charged-current DIS:

$$
\begin{gathered}
F_{2}^{\nu}=2 x \sum(q+\bar{q}) \\
x F_{3}^{\nu N}=2 x \sum(q-\bar{q}) \\
\int_{0}^{1} x F_{3}^{\nu \mathrm{N}} \frac{d x}{x}=\int_{0}^{1}\left(u_{v}+d_{v}\right) d x
\end{gathered}
$$

Gross Llewellyn-Smith: 3 Gargamelle:
$3.2+/-0.6$

Deep-Inelastic Scattering - Momentum Conservation

Neutral-current (photon) DIS:

$$
F_{2}^{N}=x \frac{e_{u}^{2}+e_{d}^{2}}{2}(u+\bar{u}+d+\bar{d})
$$

Charged-current DIS:

$$
F_{2}^{\nu N}=x(u+\bar{u}+d+\bar{d})
$$

Momentum fraction:

$$
\int_{0}^{1} F_{2}^{N} d x=\frac{e_{u}^{2}+e_{d}^{2}}{2} \int_{0}^{1} x(u+\bar{u}+d+\bar{d})
$$

Gargamelle: 0.49 +/- 0.07
SLAC: $\quad 0.14+/-0.05$
Quarks carry half of the nucleon momentum!

3-jet events at PETRA

Recall the intro on colour:

Observation of its higher order process,

marks the discovery of the gluon.

Mom. Conservation: Gluons carry the other half of the nucleon momentum.

Nucleon Structure

Three quarks with $1 / 3$ of total proton momentum each.

Three quarks with some momentum smearing.

The three quarks radiate partons to lower momentum fractions x.

HERA - Early Measurements

HERA - Early Measurements

Can these observations be related?

QCD Radiation

DGLAP equations are easy to "understand" intuitively, in terms of four "splitting functions",

$\mathrm{P}_{\mathrm{ab}}(\mathrm{z})$: the probability that parton a will radiate a parton b with the fraction z of the original momentum carried by a.

[^0]
QCD Radiation

DGLAP is highly successful, but not the only approach.

Gluons do not recombine,
incoherence is preserved.
Gluon-dense environments?

Similarly, process-independent quarks, survive.

How does DGLAP work?

QCD Radiation

Schematically, DGLAP equations:

$$
\frac{d q_{f}\left(x, Q^{2}\right)}{d \ln Q^{2}}=a_{s}\left[q_{f} P_{q q}+g \otimes P_{g q}\right]
$$

That is, the change of quark distribution q with Q^{2} is given by the probability that q and g radiate q.

Similarly, for gluons:

$$
\frac{d g\left(x, Q^{2}\right)}{d \ln Q^{2}}=a_{s}\left[\Sigma q_{f} \otimes P_{q g}+g \otimes P_{g g}\right]
$$

QCD Radiation

A parton at x at Q^{2} is a source of partons at $x^{\prime}<x$ at $Q^{2}>Q^{2}$.

QCD Radiation

A parton at x at Q^{2} is a source of partons at $x^{\prime}<x$ at $Q^{2}>Q^{2}$.

QCD Radiation

A parton at x at Q^{2} is a source of partons at $x^{\prime}<x$ at $Q^{\prime 2}>Q^{2}$.

Any parton at $x>x^{\prime}$ at Q^{2} is a source.

It is necessary and sufficient to know the parton densities in the range $x^{\prime} \leq x \leq 1$ at a lower Q^{2} to determine the parton density at $x^{\prime}, Q^{\prime 2}$.

QCD Radiation
A parton at x at Q^{2} is a source of partons at $x^{\prime}<x$ at $Q^{2}>Q^{2}$.

Any parton at $x>x^{\prime}$ at Q^{2} is a source.

It is necessary and sufficient to know the parton densities in the range $x^{\prime} \leq x \leq 1$ at a lower Q^{2} to determine the parton density at $x^{\prime}, Q^{\prime 2}$.

If you measure partons in range $x^{\prime} \leq x \leq 1$ at some Q^{2} then you know them in that range, and only that range, for all $Q^{\prime 2}$.

QCD Radiation
A parton at x at Q^{2} is a source of partons at $x^{\prime}<x$ at $Q^{\prime 2}>Q^{2}$.

Any parton at $x>x^{\prime}$ at Q^{2} is a source.

It is necessary and sufficient to know the parton densities in the range $x^{\prime} \leq x \leq 1$ at a lower Q^{2} to determine the parton density at $x^{\prime}, Q^{\prime 2}$.

If you measure partons in range $x^{\prime} \leq x \leq 1$ at some Q^{2} then you know them in that range, and only that range, for all $Q^{\prime 2}$. Asymptotic solutions exist to the DGLAP equations that may overwhelm the intrinsic contributions.

Bjorken scaling vis-a-vis QCD Radiation

Modern understanding of nucleon composition

- DIS is about nucleon or nuclear structure, nowadays described in terms of quarks and gluons,
- Feynman's parton model - point like partons, which behave incoherently - combined with QCD radiation are remarkably successful in describing DIS cross sections.
- Parton distributions $f(x)$ are intrinsic properties of the nucleon and (thus) process independent.
- QCD evolution allows one to relate quantitatively processes at different scales Q^{2},

This is great for RHIC, LHC, and many other areas.

- Gluons are a very significant part of the nucleon

Questions or comments, before we move on?

DIS - Surprises with Nuclei

DIS - Surprises with Nuclei

~10 times higher beam energy than earlier DIS experiments,

An iron target to boost luminosity...

Who ordered this?

Numerous models, often based on:

- single (bound) nucleons,
- pion enhancement,
- multiquark clusters,
- dynamic rescaling,
- shadowing

Textbook effect, remains in search of a comprehensive explanation.

DIS - Surprises with Nuclei

~10 times higher beam energy than earlier DIS experiments,

An iron target to boost luminosity...
Who ordered this?

Nowadays,
~ 800 fixed target data points on $F_{2} A / F_{2}^{D}$, ~200 $F_{2}^{A} / F_{2} A^{\prime}$,
~100 Drell-Yan.
And, neutrino-scattering data ($\sim 3000 \mathrm{pts}$).

Physics or NuTeV experiment effect?
I. Schienbein et al, Phys. Rev. D80 (2009) 094004
K. Kovarik et al, Phys. Rev. Lett. 106 (2011) 122301

DIS - Surprises with Nuclei

CMS, ArXiv:1401.4433
H. Paukkunnen, ArXiv:1401.2345

Textbook effect, remains in search of a comprehensive explanation.

Experimental opportunities:
Near-term:

- (polarized) p+A scattering,
- continued DIS, DY,
- ...

EIC-term:

- QCD-evolution, esp. gluon region,
- NC, CC probes,
- 1-particle semi-inclusive data,
- n-particle correlations,
- diffraction,
- exclusive reactions (imaging),
- ...

Simply this student's list - input sought.

DIS - Surprises with Spin

The sum of Quark Spins contribute little to the proton spin, and strange quarks are negatively polarized.

DIS - Surprises with Spin

For the proton,

$$
\begin{aligned}
\Gamma_{1} & =\int_{0}^{1} g_{1}(x) \mathrm{d} x=\int_{0}^{1}\left(\frac{1}{2} \sum e_{q}^{2} \Delta q(x)\right) \mathrm{d} x=\frac{1}{2}\left(\frac{4}{9} \Delta_{1} u+\frac{1}{9} \Delta_{1} d+\frac{1}{9} \Delta_{1} s\right) \\
& =\frac{1}{12}\left(\Delta_{1} u-\Delta_{1} d\right)+\frac{1}{36}\left(\Delta_{1} u+\Delta_{1} d-2 \Delta_{1} s\right)+\frac{1}{9}\left(\Delta_{1} u+\Delta_{1} d+\Delta_{1} s\right) \\
& \uparrow \begin{array}{l}
\text { Known from weak neutron to proton decay, } \\
\text { combined with weak } \Sigma \text { to neutron decay }
\end{array}
\end{aligned}
$$

Known from weak neutron to proton decay
which becomes a prediction if $\Delta_{1} s=0$

DIS - Surprises with Spin

For the proton,

$$
\begin{aligned}
& \Gamma_{1}=\int_{0}^{1} g_{1}(x) \mathrm{d} x=\int_{0}^{1}\left(\frac{1}{2} \sum e_{q}^{2} \Delta q(x)\right) \mathrm{d} x=\frac{1}{2}\left(\frac{4}{9} \Delta_{1} u+\frac{1}{9} \Delta_{1} d+\frac{1}{9} \Delta_{1} s\right) \\
&=\frac{1}{12}\left(\Delta_{1} u-\Delta_{1} d\right)+\frac{1}{36}(\underbrace{\Delta_{1} u+\Delta_{1} d-2 \Delta_{1} s}_{a_{8}=3 F-D})+\frac{1}{9}\left(\Delta_{1} u+\Delta_{1} d+\Delta_{1} s\right) \\
& \sqrt{9 \%} .
\end{aligned}
$$

Known from weak neutron to proton decay, combined with weak Σ to neutron decay
Since,

$$
\left.\begin{array}{l}
\left.\frac{\partial \Gamma_{1}}{\partial a_{8}}\right|_{\text {Ellis-Jaffe }} \simeq \frac{5}{36} \\
\left.\frac{\partial \Gamma_{1}}{\partial a_{8}}\right|_{\text {experiment }} \simeq 0
\end{array}\right\} \begin{aligned}
& \text { one can recover the E-J expectation with a } \\
& \text { sizable shift of } a_{8}=3 F-D, a_{8} \simeq 0.2 \pm 0.1
\end{aligned}
$$

DIS - Surprises with Spin

Numerous follow-up questions and experiment programs,

Among the early attempts at a resolution,

with the gluons polarized.
G. Altarelli and G.G. Ross Phys. Lett. B212 (1998) 391

Note: this attempt requires very significant polarization, factors larger than the nucleon spin itself, and by inference, huge compensating orbital momenta.

Other attempts include e.g extrapolation over unmeasured low- x.

II - Applications at RHIC

RHIC - Polarized Proton-Proton Collider

Unique opportunities to study nucleon spin properties and spin in QCD,

at hard (perturbative) scales with good systematic controls, e.g. from the $\sim 100 \mathrm{~ns}$ succession of beam bunches with alternating beam spin configurations.

RHIC - Polarized Proton-Proton Collider

Unique opportunities to study nucleon spin properties and spin in QCD,

50-60\% polarization

II - Applications at RHIC: Gluon Polarization

Gluon Polarization at RHIC

Measure double longitudinal spin asymmetries and establish the factorized framework,

Start with abundantly produced jets or pions at mid-rapidity, where the partonic asymmetries are sizable,

Gluon-gluon scattering contribution dominates up to jet $\mathrm{p}_{\mathrm{T}} \sim 8 \mathrm{GeV}$, where quark-gluon scattering takes over,

Path: precision, coverage, sensitivity to initial kinematics, and selective probes.

$$
\vec{p}+\vec{p} \rightarrow \operatorname{jet}(\mathrm{~s})+X \quad \vec{p}+\vec{p} \rightarrow \gamma+\text { jet } \quad \vec{p}+\vec{p} \rightarrow c \bar{c}, b \bar{b}+X
$$

$$
\mathcal{L} \simeq 3-8 \cdot \xrightarrow[\text { time }]{10^{2} \mathrm{pb}^{-1}, \quad P=0.4-0.7, \quad \sqrt{s}=200-500 \mathrm{GeV}}
$$

Gluon Polarization at STAR - Inclusive Jets

TPC: - charged track measurement over 2+ units in pseudo-rapidity

Phys. Rev. Lett. 97, 252001 (2006)

EMCs: - neutral energy measurement over an even wider range, - triggering

Gluon Polarization at STAR - Inclusive Jets

Phys. Rev. Lett. 97, 252001 (2006)

STAR is uniquely suited, at RHIC, for central-rapidity jet measurements,
Measured cross section is well-described by perturbative QCD evaluation at NLO.

Gluon Polarization from RHIC

0.20 ± 0.07

DSSV, ArXiv:1404.4293
0.21 ± 0.10

NNPDF, DIS 2014

Gluon polarization is positive in the region of the data; $-0.2 \hbar$

Gluon Polarization - DSSV

Some properties of the DSSV polarized gluon:

Strong scale dependence in the measured region

Easy to "hide" 1 h in the unmeasured region

Gluon Polarization - Near Term Prospects

$\sqrt{ } s=500 \mathrm{GeV}$ probes ~ 2.5 times smaller x_{g} than $\sqrt{ } s=200 \mathrm{GeV}$, Longer term: forward instrumentation, EIC

Gluon Polarization - Near Term Prospects

$\sqrt{ } s=500 \mathrm{GeV}$ probes ~ 2.5 times smaller x_{g} than $\sqrt{ } \mathrm{s}=200 \mathrm{GeV}$, Longer term: forward instrumentation, EIC

Applications at RHIC: Quark Polarization

Quark Polarization at RHIC

$\sqrt{ } \mathrm{s}=500 \mathrm{GeV}$ above W production threshold,
Experiment Signature:
large p_{T} lepton, missing E_{T}
Experiment Challenges:
charge-ID at large Irapidityl electron/hadron discrimination luminosity hungry

$$
\Delta \sigma^{\text {Born }}\left(\overrightarrow{p p} \rightarrow W^{+} \rightarrow e^{+} \nu_{e}\right) \propto-\Delta u\left(x_{a}\right) \bar{d}\left(x_{b}\right)(1+\cos \theta)^{2}+\Delta \bar{d}\left(x_{a}\right) u\left(x_{b}\right)(1-\cos \theta)^{2}
$$

Spin Measurements:

$$
\begin{aligned}
& A_{L}\left(W^{+}\right)=\frac{-\Delta u\left(x_{a}\right) \bar{d}\left(x_{b}\right)+\Delta \bar{d}\left(x_{a}\right) u\left(x_{b}\right)}{u\left(x_{a}\right) \bar{d}\left(x_{b}\right)+\bar{d}\left(x_{a}\right) u\left(x_{b}\right)}=\left\{\begin{array}{cc}
-\frac{\Delta u\left(x_{a}\right)}{u\left(x_{a}\right)}, & x_{a} \rightarrow 1 \\
\frac{\Delta \bar{d}\left(x_{a}\right)}{\bar{d}\left(x_{a}\right)}, & x_{b} \rightarrow 1
\end{array}\right. \\
& A_{L}\left(W^{-}\right)=\left\{\begin{array}{cl}
-\frac{\Delta d\left(x_{a}\right)}{d\left(x_{a}\right)}, & x_{a} \rightarrow 1 \\
\frac{\Delta \bar{u}\left(x_{a}\right)}{\bar{u}\left(x_{a}\right)}, & x_{b} \rightarrow 1
\end{array}\right.
\end{aligned}
$$

W and Z Production Cross Sections

PHENIX: first W^{+}and W - production cross sections in proton-proton collisions, Phys.Rev.Lett. 106 (2011) 062001,

STAR: Initial NC cross section at RHIC, confirmation of PHENIX CC cross section measurements, Phys. Rev. D85 (2012).

Data are well-described by NLO pQCD theory (FEWZ + MSTW08),

Necessary condition to interpret asymmetry measurements,

Future ratio measurements may provide insights in unpolarized light quark distributions

Quark Polarization at $\sqrt{ } \mathrm{s}=500 \mathrm{GeV}$

Applications at RHIC: Transverse Spin Phenomena

Beyond Helicity Distributions...

Simple concepts become involved...

Beyond Helicity Distributions...

Transverse Spin Phenomena - AN

Previously observed large A_{N} persist at $\sqrt{ } s=200 \mathrm{GeV}$,

- Collins effect: asymmetry comes from the transversity and the spin dependence of jet fragmentation.

- Sivers effect: asymmetry comes from spin-correlated k_{T} in the initial parton distribution

Renewed interest in transverse spin phenomena in hadroproduction.

Transverse Spin Phenomena - AN

Surprisingly, the η asymmetry is quite possibly even larger than $\pi^{0} \mathrm{~A}_{\mathrm{N}}$:

An intricate role for (anti-)strange quarks, also here?

Transverse Spin Phenomena - AN

Surprisingly, the η asymmetry is quite possibly even larger than $\pi^{0} \mathrm{~A}_{\mathrm{N}}$:

An intricate role for (anti-)strange quarks, also here?

Transverse Spin Phenomena - AN

« 1-photon events, which include a large π^{0} contribution in this analysis, are similar to 2photon events
\diamond Three-photon jet-like events have a clear nonzero asymmetry, but substantially smaller than that for isolated $\pi^{0 \prime} s$
$\diamond \mathrm{A}_{\mathrm{N}}$ decreases as the event complexity increases (i.e., the "jettiness"
$\diamond A_{N}$ for \#photons >5 is similar to that for \#photons = 5

Jettier events

Transverse Spin Phenomena - AN

A_{N} tends to be larger for events without a mid-rapidity associated jet than for events with such a jet.

Transverse Spin Phenomena - Sivers Sign-Change

DIS, attractive FSI

Siversdis

DY, repulsive ISI

- Siversdy

HP13 (2015): Test unique QCD predictions for relations between single-transverse spin phenomena in p-p scattering and those observed in deep-inelastic lepton scattering

In colloquial english: Quarks with unlike color charge attract one another in QCD.

Transverse Spin Phenomena - Sivers Sign-Change

Transverse Spin Phenomena - Sivers Sign-Change

Transverse Spin Phenomena - Sivers Sign-Change

Warsaw, April 28 - May 2

Mirganka Mondal (Texas A\&M)

Next Steps

Analyze Run-13

Increase precision in Run-15

Measure Diffractive A_{N} with Roman Pots in Run-15

Measure in Run-16

III - Towards an Electron Ion Collider

Past

Possible Future

	HERA @ DESY	LHeC @ CERN	HIAF @ CAS	ENC @ GSI	MEIC/ELIC @ JLab	eRHIC @ BNL
$\sqrt{\text { s [GeV] }}$	320	800-1300	12-65	14	20-140	45-175
proton $\mathrm{x}_{\text {min }}$	1×10^{-5}	5×10^{-7}	$7 \times 10^{-3}-3 \times 10^{-4}$	5×10^{-3}	1×10^{-4}	3×10^{-5}
ion	p	p to Pb	p to U	p to $\sim^{40} \mathrm{Ca}$	p to Pb	p to U
polarization	-	-	p, d, ${ }^{3} \mathrm{He}$	p, d	$\left.\mathrm{p}, \mathrm{d},{ }^{3} \mathrm{He}{ }^{6} \mathrm{Li}\right)$	p, ${ }^{3} \mathrm{He}$
$\mathrm{L}\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$	2×10^{31}	10^{33}	$10^{32-33}-10^{35}$	10^{32}	10^{33-34}	1033-34
Interaction Points	2	1 (?)	1	1	2+	2+
Year	1992-2007	2022 (?)	2019-2030	upgrade to FAIR	post 12 GeV	2022

High-Energy Physics
Nuclear Physics

HERA's legacy

The proton in terms of gluons and quarks pQCD at work...

HERA I+II inclusive, jets, charm PDF Fit

HERA's legacy

The proton in terms of gluons and quarks

HERA I+II inclusive, jets, charm PDF Fit

... and quite remarkable voids:

Precision FL - insufficient time,
Test isospin, u-d, - no deuterons, d / u at large x - luminosity,

Strange quark distributions - luminosity,
Spin puzzle - no hadron beam polarization, Quark-gluon dynamics in nuclei - no nuclei, Saturation - insufficient $\sqrt{ }$ / no nuclei,

HERA - RHIC

Saturation:

- geometric scaling of the cross section,
- diffractive cross-section independent of W and Q^{2},
- hints of a negative gluon number distribution (at NLO),
- forward multiplicities and correlations at RHIC,

HERA - RHIC

Saturation:

- geometric scaling of the cross section,
- diffractive cross-section independent of W and Q2,
- hints of a negative gluon number distribution (at NLO),
- forward multiplicities and correlations at RHIC,

Spin puzzle:

- defining constraint on $\Delta \mathrm{G}(\mathrm{x})$ for $\mathrm{x}>0.05$, smaller x is terra-icognita,
- fragmentation-free insight in $\Delta \mathrm{u}, \Delta \mathrm{d}, \Delta \overline{\mathrm{u}}, \Delta \overline{\mathrm{d}}$ strange (anti-)quarks?
- large forward transverse-spin phenomena origin?

Mid-term: forward upgrade(s) at RHIC
Longer-term: EIC

Rodolfo Sassot at 2013 Spin Summer Program

HERA - RHIC, JLab

Saturation:

- geometric scaling of the cross section,
- diffractive cross-section independent of W and Q2,
- hints of a negative gluon number distribution (at NLO),
- forward multiplicities and correlations at RHIC,

Spin puzzle:

- defining constraint on $\Delta \mathrm{G}(\mathrm{x})$ for $\mathrm{x}>0.05$, smaller x is terra-icognita,
- fragmentation-free insight in $\Delta \mathrm{u}, \Delta \mathrm{d}, \Delta \overline{\mathrm{u}}, \Delta \overline{\mathrm{d}}$ strange (anti-)quarks?
- large forward transverse-spin phenomena origin?

Imaging / tomography:

- valence quark region,
gluon region?

U.S. EIC Science Case

- How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleus?
- Where does the saturation of gluon densities set in?
- How does the nuclear environment affect the distribution of quarks and gluons and their interactions in nuclei?

U.S. EIC Capabilities

- A collider to provide kinematic reach well into the gluon dominated regime,
- Electron beams provide the unmatched precision of the electromagnetic interaction as a probe,
- Polarized nucleon beams to determine the correlations of sea quark and gluon distributions with the nucleon spin,
- Heavy Ion beams to access the gluonsaturated regime and as a precise dial to study propagation of color charges in nuclear matter.

U.S. EIC Science Case and Measurements

Key questions:

- How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleus?
- Where does the saturation of gluon densities set in?
- How does the nuclear environment affect the distribution of quarks and gluons and their interactions in nuclei?
coberent comtributions from many macheons ence programs in the U.S. established at both effectively amplify the gluon density being the CEBAF scoelerator at JLab and RHIC at peobed.
The FIC was desiemated in the 2007 Nu . BNL in dramatlic and fundamentally impos. Key measurements:

Inclusive Deep-Inelastic Scattering,

Semi-inclusive deep-inelastic scattering with one or two of the particles in the final state,

Exclusive deep-inelastic scattering,

- Diffraction.

> ties around the world by being at the inten- ion beams; c) two to three orders of magsity froatier with a versatile range of kine witude increase in luminosity to facilitate tomatics and beam polarizations, as well as mographic imaging; and d) wide energy varibeam species, allowing the above questions abibily to enhance the sensitivity to gloun to be tackled at one fucility. In particu- distributions. Achieving these challenging lar, the EIC design excecds the capabilities tectnical improvements in a single facility of HERA, the only electron-proton collider will extend U.S. leadership in acolerator sci-

U.S. EIC Science Case and Measurements

Key requirements:

- Electron identification - scattered lepton
- Momentum and angular resolution - x, Q
- $\pi^{+}, \pi^{-}, K^{+}, K^{-}, p^{+}, p^{-}, \ldots$ identification, acceptance
- Rapidity coverage, t-resolution

Inclusive Deep-Inelastic Scattering,

Semi-inclusive deep-inelastic scattering with one or two of the particles in the final state,

Exclusive deep-inelastic scattering,

Diffraction.

[^1]
U.S. EIC Science Case and Measurements

eRHIC: EIC at Brookhaven National Laboratory

eRHIC Design Study An Electron-Ion Collider at BNL

DRAFT
February 2014

E.C. Aschenauer et al

Numerous external contributions,

The eRHIC accelerator ... design adds a high-current, multi-pass Energy Recovery Linac (ERL) and electron recirculation rings to the existing RHIC hadron facility:

to provide a polarized electron beam with energy 15.9 GeV colliding with ion species ranging from polarized protons with a top energy of 250 GeV to fully stripped Uranium ions with energies up to $100 \mathrm{GeV} / \mathrm{u}$, and enucleon luminosity of $10^{33} \mathrm{~cm}^{-2} \mathrm{sec}^{-2}$.

DIS Kinematics

Definitions: $\quad e=\left(0,0,-E_{e}, E_{e}\right)$

$$
\begin{aligned}
e^{\prime} & =\left(E_{e}^{\prime} \sin \theta_{e}^{\prime}, 0, E_{e}^{\prime} \cos \theta_{e}^{\prime}, E_{e}\right) \\
p & =\left(0,0, E_{p}, E_{p}\right) \quad \text { angles w.r.t. hadron beam }
\end{aligned}
$$

Invariants: $\quad s=(e+p)^{2}$

$$
\begin{aligned}
& q=e-e^{\prime} \quad Q^{2}=-\left(e-e^{\prime}\right)^{2} \\
& x=\frac{Q^{2}}{y s} \quad \text { no substitute for c.m. energy } \\
& y=(q \cdot p) /(e . p)
\end{aligned}
$$

Resolutions: $\left(\frac{\delta Q_{e}^{2}}{Q_{e}^{2}}\right)=\frac{\delta E_{e}^{\prime}}{E_{e}^{\prime}} \otimes \tan \left(\frac{\theta_{e}^{\prime}}{2}\right) \delta \theta_{e}^{\prime} \quad$ photoproduction

$$
\left(\frac{\delta x_{e}}{x_{e}}\right)=\left(\frac{1}{y_{e}}\right) \frac{\delta E_{e}^{\prime}}{E_{e}^{\prime}} \otimes\left[\frac{x_{e}}{E_{e} / E_{p}}-1\right] \tan \left(\frac{\theta_{e}^{\prime}}{2}\right) \delta \theta_{e}^{\prime} \quad \text { low } y
$$

DIS Kinematic Considerations

In STAR - c.f. Decadal Plan for 2010-2020:
Bending radii $\sim \mathrm{m}$, sagittas $\sim \mathrm{mm}$ (over 40 cm),
At $140^{\circ}, \mathrm{dx} / \mathrm{x} \sim 2$ implies:

$$
\mathrm{dE} / \mathrm{E} \sim 0.5 \text { at } \mathrm{x} \sim 10^{-3}
$$

$$
\mathrm{dE} / \mathrm{E} \sim 0.3 \text { at } \mathrm{x} \sim 10^{-2}
$$

$$
\mathrm{dE} / \mathrm{E} \sim 0.04 \text { at } \mathrm{x} \sim 10^{-1}
$$

At $165^{\circ}, \mathrm{dx} / \mathrm{x} \sim 2$ implies $\mathrm{dE} / \mathrm{E} \sim 0.09$ at 5.10^{-3}
Electron/hadron separation ~10²

eRHIC - Detector Concepts

Optimized Detector

eRHIC - Detector Concepts

Optimized Detector

eRHIC - Detector Concepts

Optimized Detector

ePHENIX

eRHIC - Detector Concepts

Optimized Detector

Figure 4-9: The correlation between smeared and true y, x and Q^{2} (top to bottom left), and the resulting bin-by-bin event purity in the $x-Q^{2}$ plane (bottom right), reconstructed using the electron method. Purity is defined as (Ngen - Nout) / (Ngen - Nout + Nin), where Ngen, out, in are the number of events generated in a bin, smeared out of it, and smeared into it from other bins, respectively.

eRHIC - Detector Concepts

Optimized Detector

eSTAR

Full eRHIC, dedicated detector
\longrightarrow
Initial stage eRHIC, eSTAR

Significant measurement capability for the unpolarized and polarized inclusive structure functions.

Page 236 - Recommendations, Building a Foundation for the Future:

Without gluons, there would be no neutrons or protons and no atomic nuclei. Gluon properties in matter remain largely unexplored and mysterious.

Finding: An upgrade to an existing accelerator facility that enables the colliding of nuclei and electrons at forefront energies would be unique for studying new aspects of quantum chromodynamics. In particular, such an upgrade would yield new information on the role of gluons in protons and nuclei. An electron-ion collider is currently under scrutiny as a possible future facility.

Recommendation: Investment in accelerator and detector research and development for an electronion collider should continue. The science opportunities and the requirements for such a facility should be carefully evaluated in the next Nuclear Science Long Range Plan.

No other facility finding or recommendation.

National Research Council. Nuclear Physics: Exploring the Heart of Matter. Washington, DC: The National Academies Press, 2013.

[^0]: Yu.L. Dokshitzer, Sov.Phys. JETP 46 (1977) 641,
 V.N. Gribov and L.N.Lipatov, Sov. Journ. Nucl. Phys. 15 (1972) 438; ibid 15 (1972) 675
 G.Altarelli and G.Parisi, Nucl.Phys. B126 (1977) 298

[^1]: ties around the world by being at the inten- ioa beams; c) two to three orders of mag
 beam species, allowing the abone questions ability to enhaoce the sensitivity to elugat to be tacklod at one faclity In particu. distributions Achieving these challeneting lar, the EIC dexign exceeds the capabilities tectnical improvements in a single fscility of HERA, the anly electron-protoon collider will extend US, leadership in accelerator sci-

