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Outline 

• Why particle correlations? 
– Few-body (jet-like) correlations 
– Many-body (flow) correlations 
– Analysis techniques 

• Particle correlations in heavy-ion collisions 
– Near-side ridge correlation 
– Away-side double-peak correlation 
– Triangular flow background 

• Particle correlations in small systems 
– Revisit two-particle acceptance correction 

• Flow correlations 
– Some new idea: initial state anisotropy, quantum mechanics 
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Artist’s view of heavy-ion collisions 
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Why particle correlations? 

• Single particles can only measure production 
rates and kinematic distributions 

• High-energy collisions are complex—need 
particle correlations to measure the complex 
structure of the collision system 

• Particle correlations measure jet-like 
correlations, flow, etc. 

• Majority of measurements in heavy-ion 
collisions are done by particle correlations 
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Two categories of correlations 

• Few-body, e.g. 
– Jets 

– Resonance decays  

• Many-body, event-wise 
– Collective flow 
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Analysis techniques 
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• Tracking efficiency is corrected for associated particles. 
• Trigger particles are often uncorrected, because correlations are normalized per trigger. 

Better to have trigger particle correction as well. 
• Two-particle acceptance often corrected by mixed-events: 𝑩(∆𝜼, 𝜟𝝓)/ 𝑩(𝟎, 𝜟𝝓). 
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Particle correlations  
in heavy-ion collisions 
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Jet correlations 

 
• Hard-scattering between 

partons in pp. 

• Calculable by pQCD 

• Fragmentation of  partons 
produces back-to-back jets 
of  hadrons. 

• Jets are clustered in angle 
and rich in high-pT particles. 

• Jets produced in AA 
traverse and interact with 
the medium, lose energy 
and thus carry 
information of  the 
medium. 
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pT
trig>4 GeV/c, 2<pT

assoc<4 GeV/c 

away-side particles  

suppressed at high pT 

pT
trig=4-6 GeV/c, pT

assoc=0.15-4 GeV/c 

STAR PRL95 (2005) 152301 

Particle correlations: focus on away side 
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STAR PRL91  

(2003) 072304 

STAR PRL91  

(2003) 072304 



The near-side is also interesting 
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Au+Au ridge 

STAR, PRL 95 (2005); PRC82 (2010) 
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Triangular flow in heavy-ions 

• Double-peak away-side 
correlations 

• Long-range near-side ridge 

• Triangular flow, v3 

• Other odd harmonics 

 

Au+Au ridge 
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vn are measured by two-particle correlations 

• Vn from two-particle correlation 

• Subtract vn from two-particle  
correlation 

• Almost a tautology 

• Comparison to hydro gives us  
confidence that vn are mostly  
from flow 

• Quantitatively how much is flow  
and how much is nonflow— 
still an open question. 

• Hydro has some tension to simultaneously describe v2 and v3 

• Important to reduce/eliminate nonflow contributions to flow;  
do as best a job as we can. 
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ALICE, Phys. Rev. Lett. 107 (2011) 032301 



EP-dep. correlation with vn subtraciton 

Strategy: 

• Measure vn by two-particle correlation with one particle at as low pT as 
feasible, to maximally reduce nonflow contaminations. 

• Subtract vn measurements from two-particle correlations at high and 
intermediate pT. 

 

 

 

 

 

Open questions: 

• Effect of jets on event plane reconstruction? 

• Are any remaining correlations still coming from hydro flow, i.e. jets are 
completely gone? 
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Particle correlations  
in small systems 
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usual p-p collision high multiplicity p-p collision 
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Ridge in small systems  

CMS, JHEP 1009 (2010) 091 



• Why wasn’t it discovered long ago by HEP? 

 

• Two types of discoveries:  
– Theoretically predicted, and experimentally verified 

– Surprises 

 

• HEP moved on to more exclusive processes 

 

• There may be still important physics that were missed in 
last half century 
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p-p collision (high Mult.) p-Pb collision (high Mult.) 
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Physical origin unclear 
 

CMS, PLB718  
(2013) 795 

CMS, JHEP 1009 (2010) 091 



CGC/Glasma 

 

Dusling & Venugopalan 1211.3701 

Dusling and Venugopalan, arXiv:1302.7018 
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Another explanation: Hydro flow 

• In heavy-ions, subtract v2  non-zero finite correlation: near-
side large  ridge, away-side double peak  v3 
 

• In pp, pA (and possibly dA) systems, subtract uniform pedestal  
 non-zero finite correlation: large  ridge  v2 (and v3)  
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Acceptance correction revisited 

• Two-particle acceptance correction by 
mixed-events is, in principle, wrong.  

 

 

• Should just be corrected by single particle 
efficiencies: 

 

 

• How much error it makes? 
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Dihadron per trigger pair density 
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p-going trigger Pb-going trigger 
Low  

multiplicity 

High  
multiplicity 

Shape reflects  
single particle dN/d 

L. Xu (CMS) QM 2014 



Ridge yield vs assoc 

• Near-side ridge yield: different  dependences for p-going 
and Pb-going triggers 
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Near-side ridge 
after jet subtraction 
 

L. Xu (CMS) QM 2014 



-dependence of v2()/v2(0) 

• v2 shape is  dependent in p+Pb! 

• v2 asymmetric about mid-rapidity 
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L. Xu (CMS) QM 2014 



Flow correlations 
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Collectivity, Deconfinement at RHIC 

• Low pT (≤ 2 GeV/c): 
hydrodynamic mass 
ordering 

• High pT (> 2 GeV/c): 
number of constituent 
quarks scaling 
 

 Quark degrees of 
freedom, 
deconfinement, 
Partonic Collectivity,  
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Comparison with Hydrodynamics 

 Small value of viscosity to entropy density ratio η/s 
 Model uncertainty dominated by initial eccentricity ε 
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Model: Song et al. arXiv:1011.2783 



Low η/s for QCD Matter at RHIC 

• η/s ≥ 1/4π 
• η/s(QCD matter) < η/s(QED matter) 

RHIC results 
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Viscosity quantum limit 
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Does it have to be all  
pressure-driven hydro flow? 
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Uncertainty principle 
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Infinite square well 
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Harmonic oscillator 
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Bose-Einstein Condensate 

  

Single ground state in anisotropic trap  large momentum anisotropy 
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D. S. Jin and C. A. Regal 



Thermal probability 

then it’s independent of potential. 
It’s isotropic at all temperature because K=(px

2+py
2)/2m is isotropic. 

Because  
This is classical physics limit. 

x, y at same Fermi energy, so different number of filled energy levels. 

At high temperature, classical limit, sum is approximated by integral: 

38 



Is QGP hot? 

Size r ~ 1 fm 
Intrinsic momentum/energy scale ~ 1/r ~ 200 MeV 

 
QGP temperature T ~ 300 MeV 

Typical momentum/energy ~ T ~ 300 MeV 
 

QGP is not hot at all. 
Quantum effect must be present. 
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Thermal probability weight 
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Initial v2 from QM 

D. Molnar, FW, and C.H. Greene, arXiv:1404.4119 
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D. Molnar, FW, and C.H. Greene, arXiv:1404.4119 



Typical Au+Au collisions 
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D. Molnar, FW, and C.H. Greene, arXiv:1404.4119 



Transverse profile from SHO 
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This may not correspond exactly to heavy-ion collision  
energy density profile, but close. 



Cold atoms 
Strong elliptic anisotropy 

 K. M. O’Hara et al., Science 298, 2179 (2002). 

Lithium atoms M ~ 6000 MeV 
Temperature T ~ 1 mK ~ 10-16 MeV 
Trap size x ~ 20 mm, y ~ 100 mm 
 
Typical momentum (TM)1/2 ~ 10-6 MeV 
Intrinsic momentum quantum ~ 1/r ~ 10-8 MeV, negligible. 
 
Typical energy ~ T ~ 10-16 MeV 
Intrinsic energy quantum 1/(mr2) ~ 10-20 MeV, negligible. 
 
Cold Lithium atoms are actually “hotter” than the hot QGP. 

~ 10-5 

The observed large v2 is indeed due to strong interactions. 
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Is quantum v2 real? 

• It should be… but need experiment to verify 

• Would be neat to verify QM and uncertainty principle 

 

• Need trap size x100 smaller 
• Or need nano-Kelvin temperature 

Cold atom experiment 

Proposing a cold atom quantum simulator for high-energy nuclear physics 

46 



Control the interaction 

• Hydrodynamics is only an assumption 

• Is initial QM v2 important after hydro evolution?  

• When does hydro sets in and takes over?  

• Will the initial QM v2 be washed out by hydro? 

• Current hydro implementation is classical 

• Need to incorporate QM into hydro: quantum 
hydrodynamics 
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Shooting fast atoms through trap 

• jet-quenching partonic energy loss mechanisms are far from 
clear. A very active and extensive field 

• Can we gain insights from cold atoms? 

• Shoot fast atoms through cold atom system 

 
 

 

 

 

 

• External hard probes under full control 
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Summary 

• Particle correlations are a powerful tool to study pp, pA, AA collisions 
 

• Unambiguous signal of strongly interacting QGP from high-pT jet-
quenching data. 

 

• Low pT anisotropic flow data indicate hydrodynamic behavior of sQGP. 
Extracting transport properties (such as /s) from measured data still 
need extra effort. Initial anisotropy may not be neglected. 
 

• There should be indispensable information at intermediate pT from jet-
medium interactions (not discussed in this lecture). Need creative mind 
and novel approaches. 
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