Multi-particle production and thermalization in hadron-hadron collisions

Raju Venugopalan Brookhaven National Laboratory

Berkeley Summer School, June 9-12, 2014

QCD: Known Knowns and Known Unknowns

QCD: Known Knowns and Known Unknowns

Known knowns in QCD:

 Perturbative QCD: precision physics for large Q² – rare processes (also weak coupling techniques in finite T and μ_B QFT)

Lattice QCD: Quantitative description of (mostly) hadron ground state properties. (see Prof. Fodor's talk)

Chiral perturbation theory: low energy meson and baryon interactions

QCD: Known Knowns and Known Unknowns

Known unknowns in QCD:

The bulk of elastic, inelastic and diffractive cross-sections in QCD (sometimes called ``soft" physics – though includes scales of a few GeV).

Fragmentation/hadronization is not understood though useful and successful parametrizations exist.

Stringy models (PYTHIA, DPM, AMPT, EPOS) successfully parametrize a lot of data and loosely capture features of the underlying theory.

However, they cannot be derived in any limit from QCD, and require further ad hoc assumptions and parameters when applied In extreme environments

What we need

- An effective theory to describe the varied phenomena of multi-particle production in high energy collisions
- Smoothly matches to QCD in appropriate kinematic limits
- The rest of my talk will briefly outline the elements of such a theory.
- The theory has much predictive power—however, it is least effective when the physics is sensitive to the infrared scales that govern chiral symmetry breaking and confinement.

The proton at high energies

"x-QCD"- small x evolution

$$\int_{0}^{1} \frac{dx}{x} (xq(x) - x\bar{q}(x)) = 3 \longrightarrow \text{ # of valence quarks}$$
$$\int_{0}^{1} \frac{dx}{x} (xq(x) + x\bar{q}(x)) \to \infty \longrightarrow \text{ # of quarks}$$

Bremsstrahlung -linear QCD evolution

Each rung of the ladder gives

$$\alpha_S \int \frac{dk_t^2}{k_t^2} \int \frac{dx}{x} \equiv \alpha_S \ln\left(\frac{x_0}{x}\right) \ln\left(\frac{Q^2}{Q_0^2}\right)$$

If only transverse momenta are ordered from target to projectile:

$$k_{T1}^2 << k_{T2}^2 << \cdots Q^2$$

Sum leading logs in Q² (DGLAP evolution)

Conversely, $x_0 >> x_1 \cdots >> x$

Sum leading logs in x (BFKL evolution)

Both DGLAP and BFKL give rapid growth of gluon density at small x

Proton becomes a dense many body system at high energies

Parton Saturation

Gribov,Levin,Ryskin (1983) Mueller,Qiu (1986)

 Competition between attractive bremsstrahlung and repulsive recombination and screening effects

Maximum phase space density (f = $1/\alpha_s$) =>

$$\frac{1}{2(N_c^2 - 1)} \frac{x G(x, Q^2)}{\pi R^2 Q^2} = \frac{1}{\alpha_S(Q^2)}$$

This relation is saturated for

$$Q = Q_s(x) >> \Lambda_{\rm QCD} \approx 0.2 \,\,{
m GeV}$$

Parton Saturation:Golec-Biernat --Wusthoff dipole model

Parameters: $Q_0 = 1$ GeV; $\lambda = 0.3$; $x_0 = 3^* 10^{-4}$; $\sigma_0 = 23$ mb

Evidence from HERA for geometrical scaling

Gelis et al., hep-ph/0610435

Many-body dynamics of universal gluonic matter

How does this happen ? What are the right degrees of freedom ?

How do correlation functions of these evolve ?

Is there a universal fixed point for the RG evolution of d.o.f

Does the coupling run with Q_s^2 ?

How does saturation transition to chiral symmetry breaking and confinement

The high energy nuclear wavefunction in QFT

- At high energies, interaction time scales of fluctuations are dilated well beyond typical hadronic time scales
- Lots of short lived (gluon) fluctuations now seen by probe
 -- proton/nucleus -- dense many body system of (primarily) gluons
- Fluctuations with lifetimes much longer than interaction time for the probe function as static color sources for more short lived fluctuations

Nuclear wave function at high energies is a Color Glass Condensate

The nuclear wavefunction at high energies

Higher Fock components dominate multiparticle productionconstruct Effective Field Theory

Valence modesare static sources for wee

Born--Oppenheimer LC separation natural for EFT.

RG eqns describe evolution of wavefunction with energy

What do sources look like in the IMF?

Wee partons "see" a large density of color sources at small transverse resolutions

Effective Field Theory on Light Front

Susskind Bardacki-Halpern

RG equations describe evolution of W with x

JIMWLK, BK

Classical field of a large nucleus

Quantum evolution of classical theory: Wilson RG

Wilsonian RG equations describe evolution of all N-point correlation functions with energy

JIMWLK Jalilian-marian, lancu, McLerran, Weigert, Leonidov, Kovner

Saturation scale grows with energy

Bulk of high energy cross-sections: a) obey dynamics of novel non-linear QCD regime

b) Can be computed systematically in weak coupling

Many-body high energy QCD: The Color Glass Condensate

Gelis, Iancu, Jalilian-Marian, RV: Ann. Rev. Nucl. Part. Sci. (2010), arXiv: 1002.0333

Dynamically generated semi-hard "saturation scale" opens window for systematic weak coupling study of non-perturbative dynamics

Inclusive DIS: dipole evolution

Inclusive DIS: dipole evolution

B-JIMWLK eqn. for dipole correlator

 $\frac{\partial}{\partial Y} \langle \operatorname{Tr}(V_x V_y^{\dagger}) \rangle_Y = -\frac{\alpha_S N_c}{2\pi^2} \int_{z_{\perp}} \frac{(x_{\perp} - y_{\perp})^2}{(x_{\perp} - z_{\perp})^2 (z_{\perp} - y_{\perp})^2} \langle \operatorname{Tr}(V_x V_y^{\dagger}) - \frac{1}{N_c} \operatorname{Tr}(V_x V_z^{\dagger}) \operatorname{Tr}(V_z V_y^{\dagger}) \rangle_Y$

Dipole factorization:

 $\langle \operatorname{Tr}(V_x V_z^{\dagger}) \operatorname{Tr}(V_z V_y^{\dagger}) \rangle_Y \longrightarrow \langle \operatorname{Tr}(V_x V_z^{\dagger}) \rangle_Y \langle \operatorname{Tr}(V_z V_y^{\dagger}) \rangle_Y \quad \mathbf{N_c} \twoheadrightarrow \infty$

Resulting closed form eqn. is the Balitsky-Kovchegov eqn. Widely used in phenomenological applications

CGC Effective Theory: B-JIMWLK hierarchy of correlators

At high energies, the d.o.f that describe the frozen many-body gluon configurations are novel objects: dipoles, quadrupoles, ...

Universal – appear in a number of processes in p+A and e+A; how do these evolve with energy ?

Solving the B-JIMWLK hierarchy

- □ JIMWLK includes multiple scatterings & leading log evolution in x
- Expectation values of Wilson line correlators at small x satisfy a Fokker-Planck eqn. in functional space Weigert (2000)
- This translates into a hierarchy of equations for n-point Wilson line correlators
- As is generally the case, Fokker-Planck equations can be re-expressed as Langevin equations – in this case for Wilson lines

Blaizot, lancu, Weigert Rummukainen, Weigert

B-JIMWLK hierarchy: Langevin realization

Numerical evaluation of Wilson line correlators on 2+1-D lattices:

$$\left\langle \mathcal{O}[U] \right\rangle_Y = \int D[U] W_Y[U] \mathcal{O}[U] \longrightarrow \frac{1}{N} \sum_{U \in W} \mathcal{O}[U]$$

Langevin eqn:

Gaussian random variable

$$\partial_{Y} [V_{x}]_{ij} = [V_{x}it^{a}]_{ij} \left[\int d^{2}y \ [\mathcal{E}^{ab}_{xy}]_{k} \ [\xi^{b}_{y}]_{k} + \sigma^{a}_{x} \right]$$

$$\mathcal{E}^{ab}_{xy} = \left(\frac{\alpha_{S}}{\pi^{2}}\right)^{1/2} \ \frac{(x-y)_{k}}{(x-y)^{2}} \left[1 - U^{\dagger}_{x}U_{y} \right]^{ab} \qquad \sigma^{a}_{x} = -i \left(\frac{\alpha_{S}}{2\pi^{2}} \int d^{2}z \frac{1}{(x-z)^{2}} \operatorname{Tr}(T^{a} \ U^{\dagger}_{x}U_{z})\right)$$
"square root" of JIMWLK kernel "drag"

Initial conditions for V's from the MV model

Daughter dipole prescription for running coupling

Functional Langevin solutions of JIMWLK hierarchy

Rummukainen, Weigert (2003)

Dumitru, Jalilian-Marian, Lappi, Schenke, RV, PLB706 (2011)219

Ve are now able to compute all n-point correlations of a theory of strongly correlated gluons and study their evolution with energy!

Correlator of Light-like Wilson lines Tr(V(0,0)V^dagger (x,y))

Semi-inclusive DIS: quadrupole evolution

Dominguez, Marquet, Xiao, Yuan (2011)

$$\frac{d\sigma^{\gamma_{\mathrm{T},\mathrm{L}}^*A \to q\bar{q}X}}{d^3k_1 d^3k_2} \propto \int_{x,y,\bar{x}\bar{y}} e^{ik_{1\perp} \cdot (x-\bar{x})} e^{ik_{2\perp} \cdot (y-\bar{y})} \left[1 + Q(x,y;\bar{y},\bar{x}) - D(x,y) - D(\bar{y},\bar{x})\right]$$

Semi-inclusive DIS: quadrupole evolution

$D(x,y) = \frac{1}{N_c} \langle \operatorname{Tr}(V_x V_y^{\dagger}) \rangle_Y$

RG evolution provides fresh insight into multi-parton correlations

Q_s r

Rate of energy evolution of dipole and quadrupole saturation scales

2

6

8

10

0

Dipoles, exhibit **Geometrical Scaling**

Iancu, Triantafyllopolous, arXiv:1112.1104

Universality: Di-hadrons in p/d-A collisions

Forward-forward di-hadrons sensitive to both dipole and quadrupole correlators

Recent computations (Stasto, Xiao, Yuan + Lappi, Mäntysaari) include Pedestal, Shadowing (color screening) and Broadening (multiple scattering) effects in CGC

RG evolution for 2 nuclei

Contributions across both nuclei are finite-no log divergences => factorization

$$\mathcal{O}_{\rm NLO} = \left[\ln \left(\frac{\Lambda^+}{p^+} \right) \mathcal{H}_1 + \ln \left(\frac{\Lambda^-}{p^-} \right) \mathcal{H}_2 \right] \mathcal{O}_{\rm LO}$$

Factorization + temporal evolution in the Glasma

$$T_{\rm LO}^{\mu\nu} = \frac{1}{4} g^{\mu\nu} F^{\lambda\delta} F_{\lambda\delta} - F^{\mu\lambda} F_{\lambda}^{\nu} \qquad o\left(\frac{Q_S^4}{g^2}\right)$$

 ϵ =20-40 GeV/fm³ for τ =0.3 fm @ RHIC

NLO terms are as large as LO for $\alpha_s \ln(1/x)$: small x (leading logs) and strong field (gp) resummation

Gelis,Lappi,RV (2008)

$$\langle T^{\mu\nu}(\tau,\underline{\eta},x_{\perp})\rangle_{\text{LLog}} = \int [D\rho_1 d\rho_2] W_{Y_1}[\rho_1] W_{Y_2}[\rho_2] T^{\mu\nu}_{\text{LO}}(\tau,x_{\perp})$$
$$Y_1 = Y_{\text{beam}} - \eta \, ; \, Y_2 = Y_{\text{beam}} + \eta$$

Glasma factorization => universal "density matrices W" \otimes "matrix element"

Collisions of lumpy gluon ``shock" waves

Systematic framework: Quantum field theory in presence of strong time dependent color sources.

For inclusive quantities, initial value problem in the Schwinger-Keldysh formalism.

In QCD, important and subtle issues: factorization, renormalization, universality

Gelis, Venugopalan (2006) Gelis, Lappi, Venugopalan (2008,2009) Jeon (2014)

Collisions of lumpy gluon ``shock" waves

Leading order solution: Solution of QCD Yang-Mills eqns

$$D_{\mu}F^{\mu\nu,a} = \delta^{\nu+}\rho^{a}_{A}(x_{\perp})\delta(x^{-}) + \delta^{\nu-}\rho^{a}_{B}(x_{\perp})\delta(x^{+})$$
$$x^{\pm} = t \pm z$$
$$F^{\mu\nu,a} = \partial_{\mu}A^{\nu,a} - \partial_{\nu}A^{\nu,a} + gf^{abc}A^{\mu,b}A^{\nu,c}$$

T^{μν} from Yang-Mills dynamics

$$T_{\mu\nu}(\tau=0) = \frac{1}{2}(B_z^2 + E_z^2) \times \text{diag}(1,1,1,-1)$$

Initial longitudinal pressure is negative: Goes to $P_L = 0$ from below with time evolution

Imaging the force fields of QCD

Solns. of QCD Yang-Mills eqns. demonstrate that each of these color "flux tubes" stretching out in rapidity is of transverse size $1/Q_s << 1$ fm

Imaging the force fields of QCD

Solns. of QCD Yang-Mills eqns. demonstrate that each of these color "flux tubes" stretching out in rapidity is of transverse size 1/Q_s << 1 fm

Multiparticle dynamics is controlled by sub-nucleon QCD scales

Imaging the force fields of QCD

Solns. of QCD Yang-Mills eqns. demonstrate that each of these color "flux tubes" stretching out in rapidity is of transverse size 1/Q_s << 1 fm

Multiparticle dynamics is controlled by sub-nucleon QCD scales

There are ~ $\pi R^2 Q_s^2$ flux tubes – multiplicity, dn/d $\eta \approx \pi R^2 Q_s^2 / \alpha_s$

Single inclusive gluon production

- **Full JIMWLK+YM evolution feasible** Lappi, PLB 703 (2011)209
- In practice: approximations of varying rigor

Extracting lumpy glue in the proton-IPSat model

Bartels, Golec-Biernat, Kowalski Kowalski, Teaney Kowalski, Motyka, Watt

Extracting lumpy glue in the proton-IPSat model

Very good agreement of IPSat model with combined HERA data

Inclusive DIS off proton

Exclusive DIS off proton

Lumpy nuclei: constrained by (limited) DIS data

Kowalski, Lappi, RV, PRL (2008)

 $x = 10^{-2}$ $x = 10^{-3}$ $x = 10^{-4}$ $x = 10^{-5}$

Multiplicities from Yang-Mills dynamics

High multiplicity events: two particle correlations

Full YM+JIMWLK evolution – not available yet

• Approximations:

I) BK Gaussian truncation approximation -evolution but no rescatteringII) YM results for MV model: rescattering but no evolution

Dusling,Gelis,Lappi,RV:0911.2720; Lappi,Srednyak,RV:0911.2068; Kovchegov,Wertepny: 1212.1195

2-particle correlations

Dumitru, Gelis, McLerran, RV Dusling, Fernandez-Fraile, RV

Glasma flux tube picture: two particle correlations proportional to ratio $1/Q_s^2/S_T$

Only certain color combinations of "dimers" give leading contributions

To be discussed in the next lecture...

2-particle n-particle correlations

Gelis, Lappi, McLerran

Multiplicity distribution: Leading combinatorics of dimers gives the negative binomial distribution

$$\begin{split} P_n^{\mathrm{N.B.}}(\bar{n},k) &= \frac{\Gamma(k+n)}{\Gamma(k)\Gamma(n+1)} \frac{\bar{n}^n k^k}{(\bar{n}+k)^{n+k}} \\ k &= \zeta \frac{(N_c^2-1)Q_S^2 S_\perp}{2\pi} \\ k &= \mathbf{1:} \text{ Bose-Einstein} \\ \mathbf{k} &= \mathbf{\infty:} \text{ Poisson} \end{split}$$

Non.pert.constant-can be computed in Yang-Mills simulations

Lappi, Srednyak, RV, 0911.2068 Schenke, Tribedy, RV, 1206.6805

Negative Binomial Distributions from nonperturbative Yang-Mills dynamics

Schenke, Tribedy, RV:1202.6646

NBDs in heavy ion collisions

Schenke, Tribedy, RV: arXiv:1206.6805

Only model of heavy ion collisions where multiplicity dist./centrality selection Is not an external input

Matching boost invariant Yang-Mills to hydrodynamics

State of the art phenomenology: Solve relativistic viscous hydrodynamic equations with Glasma (Yang-Mills) initial conditions

Matching boost invariant Yang-Mills to hydrodynamics

Energy density and (u_x,u_y) from $\ u_{\mu}T^{\mu
u}=arepsilon u^{
u}$

Matching boost invariant Yang-Mills to hydrodynamics

Matching to viscous hydro is "brutal" : assume very rapid isotropization at initial hydro time

Large systematic uncertainty: how does isotropization/ thermalization occur on times < 1 fm/c ?

Hydrodynamics: efficient translation of spatial anisotropy into momentum anisotropy

 $\frac{dN}{d\phi} = \frac{N}{2\pi} \left(1 + 2v_1 \cos(\phi) + 2v_2 \cos(2\phi) + 2v_3 \cos(3\phi) + 2v_4 \cos(4\phi) + \cdots \right)$

MUSIC: 3+1-D event-by-event viscous relativistic hydro model

Schenke, Jeon, Gale

Gale, Jeon, Schenke, Tribedy, Venugopalan, PRL (2013) 012302

Results from the IP-Glasma +MUSIC model:

RHIC data require lower average value of η /s relative to LHC

Schenke, Venugopalan, arXiv:1405.3605

Remarkable agreement of IP-Glasma+MUSIC with data out to fairly peripheral overlap geometries...

BACKUP SLIDES

PATH INTEGRAL:

Coarse graining \rightarrow Box of size $1/p_t$ in transverse plane

Sum over spins in box:

$$\sum_{l} v_{l}^{(k)} \sum_{m=-l}^{l} |l,m| \ge l, m| \to \int d^{3}l \, e^{-2 \, l^{2}/k}$$

Classical color/spin density:

$$l^{a} = (\Delta x_{\perp})^{2} \frac{1}{g} \rho^{a}(x_{\perp}) \implies 2 \frac{l^{2}}{k} = \frac{\pi R^{2}}{g^{2} A} (\Delta x_{\perp})^{2} \rho^{a} \rho^{a}$$

JIMWLK eqn. Jalilian-Marian, lancu, McLerran, Weigert, Leonidov, Kovner

Inclusive DIS: dipole evolution a la IP-Sat

3

(Few) parameters fixed by $\chi^2 \sim 1$ fit to combined (H1+ZEUS) red. cross-section

Rezaiean, Siddikov, Van de Klundert, RV: 1212.2974

Inclusive DIS: dipole evolution a la IP-Sat

 10^{-5}

Exclusive Vector meson production:

Comparable quality fits for energy (W) and t-distributions

 10^{-2}

---- CT10 (NNLO)

······ MSTW (NNLO) — IP-Sat

Q'=100 GeV2

 10^{-4}

x

²≡10 GeV²

=2 GeV2

 10^{-3}