

Event-shape fluctuations and flow correlations in HI collisions

Jiangyong Jia

5th School of Collective Dynamics in High Energy Collisions

Brookhaven National Laboratory

6/09-6/13, 2014, Berkley

Office of Science | U.S. Department of Energy

Geometry and harmonic flow

- Probes: initial geometry and transport properties of QGP
 - How $(\varepsilon_n, \Phi_n^*)$ are transferred to (v_n, Φ_n) ?
 - What is the nature of final state (non-linear) dynamics?
 - What is the nature of longitudinal flow dynamics?

Event-by-event observables

Many little bangs

1104.4740, 1209.2323,1203.5095 ,1312.3572

$$p(v_n, v_m, \dots, \Phi_n, \Phi_m, \dots) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m \dots d\Phi_n d\Phi_m \dots}$$

	pdf's	cumulants	event-shape method
	$p(v_n)$	$v_n\{2k\}, \ k=1,2,$	NA
	$p(v_n,v_m)$	$\langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle$	yes
Flow- amplitudes	$p(v_n,v_m,v_l)$	$ \begin{array}{c} \langle v_n^2 v_m^2 v_l^2 \rangle + 2 \langle v_n^2 \rangle \langle v_m^2 \rangle \langle v_l^2 \rangle - \\ \langle v_n^2 v_m^2 \rangle \langle v_l^2 \rangle - \langle v_m^2 v_l^2 \rangle \langle v_n^2 \rangle - \langle v_l^2 v_n^2 \rangle \langle v_m^2 \rangle \end{array} $	yes
		Obtained recursively as above	yes
EP- correlation	$p(\Phi_n,\Phi_m,)$	$ \begin{array}{l} \langle v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \ldots) \rangle \\ \sum_k k c_k = 0 \end{array} $	yes
Mixed- correlation	$p(v_l,\Phi_n,\Phi_m,)$	$ \langle v_l^2 v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle - \\ \langle v_l^2 \rangle \langle v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle \\ \sum_k k c_k = 0 $	yes

Event-plane correlators

Angular component can be expanded into a Fourier series

$$\frac{dN_{\text{evts}}}{d\Phi_1 d\Phi_2 \dots d\Phi_l} \propto \sum_{c_n = -\infty}^{\infty} a_{c_1, c_2, \dots, c_l} \cos(c_1 \Phi_1 + c_2 \Phi_2 \dots + c_l \Phi_l)$$
$$a_{c_1, c_2, \dots, c_l} = \langle \cos(c_1 \Phi_1 + c_2 \Phi_2 + \dots + c_l \Phi_l) \rangle$$

• Φ_n has n-fold symmetry, thus correlation should be invariant under $\Phi_n \to \Phi_n + 2\pi/n$ or appear in multiple of $n\Phi_n$

• invariant under global rotation by any θ : $\Sigma_k \Phi_k = \Sigma_k (\Phi_k + \theta)$

• So the physical quantities are:

$$\langle \cos(c_1\Phi_1 + 2c_2\Phi_2... + lc_l\Phi_l) \rangle, c_1 + 2c_2... + lc_l = 0$$

Cumulants

• Two-particle cumulants Moments \rightarrow Cumulants $\langle X_1 X_2 \rangle = \langle X_1 \rangle \langle X_2 \rangle + \langle X_1 X_2 \rangle_c \longrightarrow \langle X_1 X_2 \rangle_c = \langle X_1 X_2 \rangle - \langle X_1 \rangle \langle X_2 \rangle$

• Three-particle cumulants

Higher-order cumulants obtained recursively

Cumulants for $p(v_n)$

- Observables: $X = e^{in\phi}$ $\langle X \rangle_c = \langle e^{in\phi} \rangle = 0$
- Moments

$$\langle X_n X_{-n} \rangle = \langle \cos n(\phi_1 - \phi_2) \rangle = \langle v_n^2 \rangle$$
 + finite number& non-flow
 $\langle X_n X_{-n} X_n X_{-n} \rangle = \langle \cos n(\phi_1 + \phi_2 - \phi_3 - \phi_4) \rangle = \langle v_n^4 \rangle$

Cumulants

$$c_{n}\{2\} = \langle X_{n}X_{-n}\rangle_{c} = \langle \cos n(\phi_{1} - \phi_{2})\rangle_{c} = \langle v_{n}^{2}\rangle$$

$$c_{n}\{4\} = \langle X_{n}X_{-n}X_{n}X_{-n}\rangle_{c} = \langle \cos n(\phi_{1} + \phi_{2} - \phi_{3} - \phi_{4})\rangle_{c} = \langle v_{n}^{4}\rangle - 2\langle v_{n}^{2}\rangle^{2}$$

$$c_{n}\{6\} = \dots = \langle v_{n}^{6}\rangle - 9\langle v_{n}^{2}\rangle\langle v_{n}^{4}\rangle + 12\langle v_{n}^{2}\rangle^{3}$$

$$c_{n}\{8\} = \dots = \langle v_{n}^{8}\rangle - 16\langle v_{n}^{6}\rangle\langle v_{n}^{2}\rangle - 18\langle v_{n}^{4}\rangle^{2} + 144\langle v_{n}^{4}\rangle\langle v_{n}^{2}\rangle^{2} - 144\langle v_{n}^{2}\rangle^{4}$$
....

Define:

$$v_n\{2\} = c_n\{2\}^{1/2} \qquad v_n\{4\} = (-c_n\{4\})^{1/4}$$
$$v_n\{6\} = \left(\frac{1}{4}c_n\{6\}\right)^{1/6} \qquad v_n\{8\} = \left(-\frac{1}{33}c_n\{8\}\right)^{1/8}$$

Cumulants for $p(\Phi_n, \Phi_m...)$

Example

$$\langle \cos(2\phi_1 + 2\phi_2 - 4\phi_3) \rangle = \langle v_2 v_2 v_4 \cos(2\Phi_2 + 2\Phi_2 - 4\Phi_4) \rangle$$
$$= \langle v_2^2 v_4 \cos 4(\Phi_2 - \Phi_4) \rangle$$

In general for mixed-harmonics:

$$\langle \cos(\Sigma_{i_1=1}^{c_1}\phi_{i_1} + \Sigma_{i_2=1}^{c_2}2\phi_{i_2} + \dots + \Sigma_{i_l=1}^{c_l}l\phi_{i_l})\rangle = \langle v_1^{c_1}v_2^{c_2}\dots v_l^{c_l}\cos(c_1\Phi_1 + 2c_2\Phi_2 + \dots + lc_l\Phi_l)\rangle$$

it is a correlation involving $c_1+c_2+..+c_l$ particles $\Sigma_k k c_k = 0$

• Moment is the same as cumulants for mixed-harmonics, i.e

$$\langle \cos(2\phi_1 + 2\phi_2 - 4\phi_3) \rangle_c = \langle \cos(2\phi_1 + 2\phi_2 - 4\phi_3) \rangle$$

all other terms vanishes, since for any other partition the Σ of coefficient $\neq 0$ Such as

$$\left\langle \cos(2\phi_1 + 2\phi_2) \right\rangle = \left\langle \cos(2\phi_1 - 4\phi_3) \right\rangle = \dots = 0$$

Cumulants for $p(v_n, v_m, \dots, \Phi_n, \Phi_m, \dots)$

- Example, combining $\cos(2\phi_1 + 2\phi_2 4\phi_3)$ and $\cos(2\phi_1 2\phi_2)$
- $\langle \cos(2\phi_1 + 2\phi_2 4\phi_3 + 2\phi_4 2\phi_5) \rangle = \langle v_2^2 v_4 v_2^2 \cos(2\Phi_2 + 2\Phi_2 4\Phi_4 + 2\Phi_2 2\Phi_2) \rangle$ = $\langle v_2^4 v_4 \cos 4(\Phi_2 - \Phi_4) \rangle$
 - Corresponding cumulants:

$$\langle \cos(2\phi_1 + 2\phi_2 - 4\phi_3 + 2\phi_4 - 2\phi_5) \rangle_c = \langle v_2^2 v_2^2 v_4 \cos 4(\Phi_2 - \Phi_4) \rangle - \langle v_2^2 \rangle \langle v_2^2 v_4 \cos 4(\Phi_2 - \Phi_4) \rangle$$

probes $p(v_2, \Phi_2, \Phi_4)$ distribution

Can be generalized into other mixed-correlators

Cumulants for $p(v_n, v_{m...})$

- Example, combining $\cos(4\phi_1 4\phi_2)$ and $\cos(2\phi_1 2\phi_2)$ $\langle \cos(2\phi_1 - 2\phi_2 + 4\phi_3 - 4\phi_4) \rangle$ $= \langle v_2^2 v_4^2 \cos(2\Phi_2 - 2\Phi_2 + 4\Phi_4 - 4\Phi_4) \rangle = \langle v_2^2 v_4^2 \rangle$
- Corresponding cumulants,

$$\langle \cos(2\phi_1 - 2\phi_2 + 4\phi_3 - 4\phi_4) \rangle_c = \langle v_2^2 v_4^2 \rangle - \langle v_2^2 \rangle \langle v_4^2 \rangle$$

probes p(v₂,v₄) distribution

• Other examples

$$\langle \cos(2\phi_1 - 2\phi_2 + \mathbf{3}\phi_3 - \mathbf{3}\phi_4) \rangle_c = \langle v_2^2 v_3^2 \rangle - \langle v_2^2 \rangle \langle v_3^2 \rangle$$

probes $p(v_2, v_3)$ distribution

1312.3572

Event-by-event observables

		✓			
Many little bangs		1104.4740, 1209.2323,1203.5095 ,1312.3572			
		$p(v_n, v_m,, \Phi_n)$	$(\Phi_m, \dots) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m \dots d\Phi_n d\Phi_m \dots}$		
		$\operatorname{pdf's}$	cumulants		
-		$p(v_n)$	$v_n\{2k\}, \ k = 1, 2, \dots$		
		$p(v_n, v_m)$	$\langle v_n^2 v_m^2 angle - \langle v_n^2 angle \langle v_m^2 angle$		
	Flow- amplitudes	$p(v_n, v_m, v_l)$	$ \begin{array}{c} \langle v_n^2 v_m^2 v_l^2 \rangle + 2 \langle v_n^2 \rangle \langle v_m^2 \rangle \langle v_l^2 \rangle - \\ \langle v_n^2 v_m^2 \rangle \langle v_l^2 \rangle - \langle v_m^2 v_l^2 \rangle \langle v_n^2 \rangle - \langle v_l^2 v_n^2 \rangle \langle v_m^2 \rangle \end{array} $		
-		•••	Obtained recursively as above		
	EP- correlation	$p(\Phi_n,\Phi_m,)$	$ \begin{array}{l} \langle v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle \\ \sum_k k c_k = 0 \end{array} $		
	Mixed- correlation	$p(v_l, \Phi_n, \Phi_m,)$	$ \begin{split} \langle v_l^2 v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \ldots) \rangle - \\ \langle v_l^2 \rangle \langle v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \ldots) \rangle \\ \sum_k k c_k = 0 \end{split} $		

Experimental reality

Need to remove non-flow:

final number effects, resonance, jets, momentum conservation...

What we know about flow fluctuation? $p(v_n)$

Expectation for v_n fluctuations

$$\vec{\varepsilon}_n = (\varepsilon_x, \varepsilon_y)$$

0708.0800, 0809.2949

 $\vec{\varepsilon}_{n} = \vec{\varepsilon}_{n} + \vec{\Delta}_{n}^{\text{fluc}}$

$$p(\vec{\varepsilon}_n) \propto \exp\left(\frac{-(\vec{\varepsilon}_n - \vec{\varepsilon}_n^0)^2}{2\delta_{\varepsilon_n}^2}\right)$$
$$\vec{\varepsilon}_n^0 \rightarrow Mean \,Geometry$$
$$\delta_{\varepsilon_n} \rightarrow Fluctuations$$

$$\vec{v}_n \propto \vec{\mathcal{E}}_n$$

$$\vec{v}_{n} = (v_{n} \cos n\Phi_{n}, v_{n} \sin n\Phi_{n})$$

$$\rightarrow \rightarrow 0 \quad \Rightarrow \text{ fluc}$$

$$V_{n} = V_{n} + p_{n}$$

$$p(\vec{v}_{n}) \propto \exp\left(\frac{-(\vec{v}_{n} - \vec{v}_{n}^{0})^{2}}{2\delta_{n}^{2}}\right)$$

$$\vec{v}_{n}^{0} \rightarrow Mean Geometry$$

 $\delta_n \rightarrow Fluctuations$

Expectation for v_n fluctuations

$$\vec{\varepsilon}_n = (\varepsilon_x, \varepsilon_y)$$

0708.0800, 0809.2949

 $\vec{\varepsilon}_{n} = \vec{\varepsilon}_{n} + \vec{\Delta}_{n}^{\text{fluc}}$

$$p(\vec{\varepsilon}_n) \propto \exp\left(\frac{-(\vec{\varepsilon}_n - \vec{\varepsilon}_n^0)^2}{2\delta_{\varepsilon_n}^2}\right)$$
$$\vec{\varepsilon}_n^0 \rightarrow Mean \,Geometry$$

 $\delta_{\varepsilon_n} \to Fluctuations$

 $\vec{v}_n \propto \vec{\mathcal{E}}_n$

$$\vec{v}_{n} = (v_{n} \cos n\Phi_{n}, v_{n} \sin n\Phi_{n})$$

$$\rightarrow \rightarrow 0 \qquad \rightarrow \text{fluc}$$

$$\vec{v}_{n} = \vec{v}_{n} + \vec{p}_{n}$$

$$n(\vec{v}_{n}) \propto \exp\left(\frac{-(\vec{v}_{n} - \vec{v}_{n}^{0})^{2}}{(\vec{v}_{n} - \vec{v}_{n}^{0})^{2}}\right)$$

$$\vec{v}_n^0 \rightarrow Mean \, Geometry$$

 $\delta_n \rightarrow Fluctuations$

 $\vec{v}_n = \vec{v}_n + \vec{p}_n$

Finite number & nonflow

The key is response function:

 $p(v_n^{\text{obs}}|v_n)$

Flow vector distributions

Obtaining the response function

Obtaining the response function

Cumulants for $p(v_n)$

• Observables: $X = e^{in\phi}$

$$\langle X \rangle_c = \langle e^{in\phi} \rangle = 0$$

Moments

$$\langle X_n X_{-n} \rangle = \langle \cos n(\phi_1 - \phi_2) \rangle = \langle v_n^2 \rangle \langle X_n X_{-n} X_n X_{-n} \rangle = \langle \cos n(\phi_1 + \phi_2 - \phi_3 - \phi_4) \rangle = \langle v_n^4 \rangle$$

....

Cumulants

$$c_{n}\{2\} = \langle X_{n}X_{-n}\rangle_{c} = \langle \cos n(\phi_{1} - \phi_{2})\rangle_{c} = \langle v_{n}^{2}\rangle$$

$$c_{n}\{4\} = \langle X_{n}X_{-n}X_{n}X_{-n}\rangle_{c} = \langle \cos n(\phi_{1} + \phi_{2} - \phi_{3} - \phi_{4})\rangle_{c} = \langle v_{n}^{4}\rangle - 2\langle v_{n}^{2}\rangle^{2}$$

$$c_{n}\{6\} = \dots = \langle v_{n}^{6}\rangle - 9\langle v_{n}^{2}\rangle\langle v_{n}^{4}\rangle + 12\langle v_{n}^{2}\rangle^{3}$$

$$c_{n}\{8\} = \dots = \langle v_{n}^{8}\rangle - 16\langle v_{n}^{6}\rangle\langle v_{n}^{2}\rangle - 18\langle v_{n}^{4}\rangle^{2} + 144\langle v_{n}^{4}\rangle\langle v_{n}^{2}\rangle^{2} - 144\langle v_{n}^{2}\rangle^{4}$$
....

Rely on Large cancellation to remove finite N and non-flow
→is or is not straightforward to cancel systematics?
→should different terms are treated separate measurement?

Cumulants for azimuthal correlations

Higher-order cumulants suppress non-flow **because** non-flow is Gaussian!! Is cumulants just mathmatical construct? What if non-flow is non-Gaussian?

$p(v_2)$, $p(v_3)$ and $p(v_4)$ distributions

• The non-zero v_n {4,6..} either due to

- average geometry such as v_2^{RP} or
- non-Gaussianness in the flow fluctuation or
- non-Gaussianness in non-flow such as p+Pb system.

Furthermore $p(v_2)$ is also non-B-G in the distribution tail

Are cumulants sensitive to non gaussian? ²²

• Divide B-G distri. to 2 equal parts, and calculate cumulants separately.

	$v_n\{2\}$	$v_n\{4\}$	$v_n\{6\}$	$v_n\{8\}$	In units of δ
all	1.414	1	1	1	
Α	0.851	0.759	0.746	0.744	
В	1.809	1.690	1.701	1.701	

The non-BG is reflected by difference of 4,6 particle cumulants Cumulants not very sensitive to details of p(vn)?

Small system

Eccentricity distri. not gaussian, due to smaller number sources

• The non-zero v_2 {4,6,8...} suggest the p(v_2) distri. is non-Gaussian?

$$v_n\{4\} = \left(2\langle v_n^2 \rangle^2 - \langle v_n^4 \rangle\right)^{1/4} \iff a 4\% \text{ difference gives a } v_n\{4\}$$

value of about 45% of $v_n\{2\}$

Multi-particle correlation in p+Pb

- What is the meaning of v_2 {4,6,8,} in p+Pb collisions?
- Why non-Gaussian component are not increasing with multiplicity?

Connection between $p(v_n)$ and $v_n\{2k\}$

 v_n {2k} removes all Gaussian sources, it removes non-flow only because it is nearly Gaussian, but in this case, one can just calculate them directly from p(v_n^{obs}) distribution

Effect of non-flow

Additional Gaussian smearing won't change higher-order cumulants

Same v_2 {4} value from either $p(v_2)$ or $p(v_2^{obs})$ distribution

Event-plane correlations $p(\Phi_n, \Phi_m...)$

Event-plane correlation

• Correlations exist in the initial geometry

Also generated during hydro evolution: non-linear mixing, e.g.

$$v_4 e^{-i4\Phi_4} \propto \varepsilon_4 e^{-i4\Phi_4^*} + cv_2^2 e^{-i4\Phi_2} + \dots$$

Event-plane correlation results

Teaney & Yan

Event plane correlation results

Teaney & Yan

Event plane correlation results

Teaney & Yan

How $(\varepsilon_n, \Phi_n^*)$ are transferred to (v_n, Φ_n) ?

• Flow response is linear for v_2 and v_3 : $v_n \propto \varepsilon_n$ and $\Phi_n \approx \Phi_n^*$ i.e. $v_2 e^{-i2\Phi_2} \propto \epsilon_2 e^{-i2\Phi_2^*}, \quad v_3 e^{-i3\Phi_3} \propto \epsilon_3 e^{-i3\Phi_3^*}$

How $(\varepsilon_n, \Phi_n^*)$ are transferred to (v_n, Φ_n) ?

- Flow response is linear for v_2 and v_3 : $v_n \propto \varepsilon_n$ and $\Phi_n \approx \Phi_n^*$ i.e. $v_2 e^{-i2\Phi_2} \propto \epsilon_2 e^{-i2\Phi_2^*}, \quad v_3 e^{-i3\Phi_3} \propto \epsilon_3 e^{-i3\Phi_3^*}$
- Higher-order flow arises from EP correlations., e.g. :

$$\begin{split} &v_4 e^{i4\Phi_4} \propto \varepsilon_4 e^{i4\Phi_4^*} + cv_2^2 e^{i4\Phi_2} + \dots & \text{Ollitrault, Luzum, Teaney, Li, Heinz, Chun} \dots \\ &v_5 e^{i5\Phi_5} \propto \varepsilon_5 e^{i5\Phi_5^*} + cv_2 v_3 e^{i(2\Phi_2 + 3\Phi_3)} + \dots \\ &v_6 e^{i6\Phi_6} \propto \varepsilon_6 e^{i6\Phi_6^*} + c_1 v_2^3 e^{i6\Phi_2} + c_2 v_3^2 e^{i6\Phi_3} + c_3 v_2 \varepsilon_4 e^{i\left(2\Phi_2 + 4\Phi_4^*\right)} \dots \end{split}$$

- Some correlators lack no intuitive explanation
 e.g. 2-3-4 correlation
 - Although described by EbyE hydro and AMPT

Compare with EbE hydro calculation

Initial geometry + hydrodynamic Zhe & Heinz 1208.1200

Compare with EbE hydro calculation

Initial geometry + hydrodynamic Zhe & Heinz 1208.1200

EbyE hydro and transport models reproduce features in the data

What is the origin of mode-mixing? example

Hadrons freezeout from exponential distribution of the flow field

$$E\frac{d^3N}{d^3\vec{p}} \approx \frac{g}{(2\pi)^3} \int_{\Sigma} \exp(-\frac{p \cdot u(x)}{T}) p \cdot d^3\sigma(x)$$

Flow field u(x) has a harmonic modulation driven by geometry

$$u(\phi) = u_0(1 + 2\sum \beta_n \cos(\phi - \Phi_n))$$

Quadratic term in saddle-point expansion leads to mode-mixing

$$e^{-p_{\mathrm{T}}u(\phi)} \approx 1 - p_{\mathrm{T}}u(\phi) + 1/2p_{\mathrm{T}}^2 u^2(\phi).$$

Borghini, Ollitrault 2005 Teaney, Yan 2012 Lang, Borghini 2013

$$v_{2}(p_{T}) \approx I(p_{T})\beta_{2}, v_{3}(p_{T}) \approx I(p_{T})\beta_{3}$$

$$v_{4}(p_{T}) \approx I(p_{T})\beta_{4} + \frac{I(p_{T})^{2}}{2}\beta_{2}^{2} \longrightarrow V_{2}^{2}$$

$$v_{5}(p_{T}) \approx I(p_{T})\beta_{5} + I(p_{T})^{2}\beta_{2}\beta_{3} \longrightarrow V_{2}V_{3}$$

$$v_{6}(p_{T}) \approx I(p_{T})\beta_{6} + \frac{I(p_{T})^{3}}{6}\beta_{2}^{3} + \frac{I(p_{T})^{2}}{2}\beta_{3}^{2} + I(p_{T})^{2}\beta_{2}\beta_{4}$$

$$v_{6}(p_{T}) \approx I(p_{T})\beta_{6} + \frac{I(p_{T})^{3}}{6}\beta_{2}^{3} + \frac{I(p_{T})^{2}}{2}\beta_{3}^{2} + I(p_{T})^{2}\beta_{2}\beta_{4}$$

Event-shape selection technique

Can we do better?

$$p(v_n, v_m, \dots, \Phi_n, \Phi_m, \dots) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m \dots d\Phi_n d\Phi_m \dots}$$

Can we do better?

 More variation in v2 within one centrality than variation of mean v2 across all centralities

Can we do better?

 More variation in v2 within one centrality than variation of mean v2 across all centralities

 Study the variation of vn at fixed centrality but varying event-geometry: "event-shape-selected vn measurements

Ideal case: selecting on eccentricity

What is the radial flow profile?

Increasing ε₂

Hidden correlations at fixed-centrality

Naturally studied via event-shape selection technique

• E.g. select events with different v_2 and study v_n . in FIXED centrality

Event-shape selection technique

Schukraft, Timmins, and Voloshin, arXiv:1208.4563

Huo, Mohapatra, JJ arxiv:1311.7091

$$\vec{q}_n = \frac{1}{\Sigma w} (\Sigma w \cos n\phi_n, \Sigma w \sin n\phi_n), w = \mathbf{p}_T, \qquad q_n = \left| \vec{q}_n \right| \text{ or } \mathbf{v}_n^{\text{obs}}$$

More info by selecting on event-shape

"Boomerang" reflects stronger viscous damping at higher p_T and peripheral

"Boomerang" reflects reflects different centrality dependence, which is also sensitive to the viscosity effect.

S. Mohapatra

v_n - v_2 correlations: within fixed centrality

Fix system size and vary the ellipticity!

Probe $p(v_n, v_2)$

Linear correlation for forward v_2 -selected bin \rightarrow viscous damping controlled by system size, not shape

v_n - v_2 correlations: within fixed centrality

• Fix system size and vary the ellipticity!

- Probe $p(v_n, v_2)$
- Overlay $\varepsilon_3 \varepsilon_2$ and $\varepsilon_4 \varepsilon_2$ correlations, rescaled

Linear correlation for forward v_2 -selected bin \rightarrow viscous damping controlled by system size, not shape

Clear anti-correlation,

quadratic rise from nonlinear coupling to v_2^2

v_n - v_2 correlations: within fixed centrality

• Fix system size and vary the ellipticity!

- Probe $p(v_n, v_2)$
- Overlay $\varepsilon_3 \varepsilon_2$ and $\varepsilon_4 \varepsilon_2$ correlations, rescaled

Linear correlation for forward v_2 -selected bin \rightarrow viscous damping controlled by system size, not shape

Clear anti-correlation, mostly initial geometry effect!!

quadratic rise from nonlinear coupling to v₂² initial geometry do not work!!

Initial geometry describe v_3 - v_2 but fails v_4 - v_2 correlation

Anti-correlation between v3 and v2

Can be used to fine tune initial geometry models!

Quantified by a linear fit and extract the intercept and slope

Events with zero ε_2 has larger average $\varepsilon_3 \rightarrow$ larger v_3 .

linear (ϵ_4) and non-linear (v_2^2) component of v_4^{50}

■ V₄-V₂ correlation for fixed centrality bin $v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^*} + c_1 \left(v_2 e^{i2\Phi_2}\right)^2 \Rightarrow$ Fit by $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$

• Fit $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$ to separate linear (ε_4) and non-linear (v_2^2) component

linear (ϵ_4) and non-linear (v_2^2) component of v_4^{51}

■ V₄-V₂ correlation for fixed centrality bin $v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^*} + c_1 \left(v_2 e^{i2\Phi_2}\right)^2 \Rightarrow$ Fit by $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$

Fit $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$ to separate linear (ε_4) and non-linear (v_2^2) component

v4 decomposition compare with EP correlation ⁵²

Leading non-linear term is enough

• If so, can also predict L and NL component from EP correlations

Good agreement is seen!

$$v_4^{\text{NL}} = v_4 \left\langle \cos 4(\Phi_2 - \Phi_4) \right\rangle, \quad v_4^{\text{L}} = \sqrt{v_4^2 - (v_4^{\text{NL}})^2}$$

What about select on one side?

Schukraft, Timmins, and Voloshin, arXiv:1208.4563

Huo, Mohapatra, JJ arxiv:1311.7091

AMPT model

- AMPT model: Glauber+HIJING+transport
 - Has fluctuating geometry and collective flow
 - Longitudinal fluctuations and initial flow

$v_2(\eta)$: select on ε_2

1311.7091

 $v_2(\eta)|_{\eta>0}$ when EP in -6< $\eta<$ -2

 $v_2(\eta)|_{\eta < 0}$ when EP in 2< $\eta < 6$

 $v_2(\eta)|_{|\eta|>2}$ when EP in $|\eta|<1$

$v_2(\eta)$: select on ϵ_2

1311.7091

 $\left.v_{2}(\eta)\right|_{\eta>0}$ when EP in -6<q<-2

 $v_2(\eta)|_{\eta<0}$ when EP in 2< $\eta<\!\!6$

 $v_2(\eta)|_{|\eta|>2}$ when EP in $|\eta|<1$

Symmetric distribution expected

$v_2(\eta)$: compare with selection on q_2

Suppression of flow in the selection window

enhancement of flow in the selection window

What is the origin of $v_2(\eta)$ asymmetry?

- Suppression/enhancement of flow in the selected window 1311.7091
- Decreasing response to flow selection outside the selection window

Dependence of $v_3(\eta)$ on q_2 in fixed centrality

• v_3 anti-correlated with $v_2 \rightarrow$ reflection of $p(\varepsilon_2, \varepsilon_3)$

What is the origin of $v_2(\eta)$ asymmetry?

- Suppression/enhancement of flow in the selected window
- Decreasing response to flow selection outside the selection window

Longitudinal particle production

wounded nucleon model Bialas, Bzdak, Zalewski, Wozniak.... STAR/PHOBOS

 Assumes that after the collision of two nuclei, the secondary particles are produced by independent fragmentation of wounded nucleons

Emission function of one wounded nucleon

Flow longitudinal dynamics

Shape of participants in two nuclei not the same due to fluctuation

$$\varepsilon_m^{\mathrm{F}}, \Phi_m^{*\mathrm{F}} \varepsilon_m^{\mathrm{B}}, \Phi_m^{*\mathrm{B}} \varepsilon_m, \Phi_m^{*} N_{\mathrm{part}}^{\mathrm{F}}, N_{\mathrm{part}}^{\mathrm{B}}, N_{\mathrm{part}} \varepsilon_n^{\mathrm{F}}, \Phi_n^{*\mathrm{F}} \neq \varepsilon_n^{\mathrm{B}}, \Phi_n^{*\mathrm{E}}$$

• Particles are produced by independent fragmentation of wounded nucleons, emission function $f(\eta)$ not symmetric in $\eta \rightarrow$ Wounded nucleon model

Flow longitudinal dynamics

• Shape of participants in two nuclei not the same due to fluctuation

$$\varepsilon_m^{\mathrm{F}}, \Phi_m^{*\mathrm{F}} \ \varepsilon_m^{\mathrm{B}}, \Phi_m^{*\mathrm{B}} \ \varepsilon_m, \Phi_m^{*} \ N_{\mathrm{part}}^{\mathrm{F}}, N_{\mathrm{part}}^{\mathrm{B}}, N_{\mathrm{part}} \ \varepsilon_n^{\mathrm{F}}, \Phi_n^{*\mathrm{F}} \
eq \varepsilon_n^{\mathrm{B}}, \Phi_n^{*\mathrm{B}}$$

• Particles are produced by independent fragmentation of wounded nucleons, emission function $f(\eta)$ not symmetric in $\eta \rightarrow$ Wounded nucleon model

Flow longitudinal dynamics

• Eccentricity vector interpolates between $\vec{\epsilon}_n^{\rm F}$ and $\vec{\epsilon}_n^{\rm B}$

$$\vec{\epsilon}_n^{\text{tot}}(\eta) \approx \alpha(\eta)\vec{\epsilon}_n^{\text{F}} + (1 - \alpha(\eta))\vec{\epsilon}_n^{\text{B}} \equiv \epsilon_n^{\text{tot}}(\eta)e^{in\Phi_n^{\text{*tot}}(\eta)}$$

Asymmetry:
$$\mathcal{E}_n^{\rm F} \neq \mathcal{E}_n^{\rm B}$$
Twist: $\Phi_n^{*{\rm F}} \neq \Phi_n^{*{\rm B}}$

$\alpha(\eta)$ determined by $f(\eta)$

- Hence $\vec{v}_n(\eta) \approx c_n(\eta) \left[\alpha(\eta) \vec{\epsilon}_n^{\mathrm{F}} + (1 \alpha(\eta)) \vec{\epsilon}_n^{\mathrm{B}} \right]$ for n=2,3
 - Picture verified in AMPT simulations, magnitude estimated 1403.6077

FB eccentricity fluctuations from Glauber

Significant EbyE FB asymmetry:

$$\varepsilon_n^{\mathrm{F}} \neq \varepsilon_n^{\mathrm{B}}$$

Significant EbyE twist:

 $\Phi_n^{*F} \neq \Phi_n^{*B}$

What AMPT tell us?

- Twist in initial geometry appears as twist in the final state flow
 - Participant plane angles:

 $\Phi_n^{*F} = \Phi_n^{*B}$

• Final state event-plane angles

$$\Psi_n \quad \Psi_n$$

ιτιΒ

Initial twist survives to final state

)TΓ

Twist seen in simple 2PC analysis

NO event-plane determination! Just select twist in large η and check correlation at center-rapidity.

- Though twist is enforced on q_2 , twist also seen for higher order v_n
- Non-linear mixing to the higher order harmonics!! .

$$v_4 e^{-i4\Phi_4} \propto \varepsilon_4 e^{-i4\Phi_4^*} + cv_2 v_2 e^{-i4\Phi_2} + \dots$$
$$v_5 e^{-i5\Phi_5} \propto \varepsilon_5 e^{-i5\Phi_5^*} + cv_2 v_3 e^{-i(2\Phi_2 + 3\Phi_3)} + \dots$$

Implications

- System <u>not</u> boost-invariant EbyE not only for $dN/d\eta$, but also flow
- Longitudinal decorrelation effects breaks the factorization, despite being initial state effects. $V_{n\Delta}(\eta_1, \eta_2) \neq v_n(\eta_1)v_n(\eta_2)$
- Decorrelation effects much stronger in pA, dA, HeA and Cu+Au system

Summary-I

Event-shape fluctuations contains a lot of information

$$p(v_n, v_m, \dots, \Phi_n, \Phi_m, \dots) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m \dots d\Phi_n d\Phi_m \dots}$$

• Three complementary methods:

Strong fluctuation within fixed centrality!

	$\operatorname{pdf's}$	cumulants	event-shape method
	$p(v_n)$	$v_n\{2k\}, \ k = 1,2,$	NA
	$p(v_n,v_m)$	$\langle v_n^2 v_m^2 angle - \langle v_n^2 angle \langle v_m^2 angle$	yes
Flow- amplitudes	$p(v_n,v_m,v_l)$	$ \begin{array}{c} \langle v_n^2 v_m^2 v_l^2 \rangle + 2 \langle v_n^2 \rangle \langle v_m^2 \rangle \langle v_l^2 \rangle - \\ \langle v_n^2 v_m^2 \rangle \langle v_l^2 \rangle - \langle v_m^2 v_l^2 \rangle \langle v_n^2 \rangle - \langle v_l^2 v_n^2 \rangle \langle v_m^2 \rangle \end{array} $	yes
	•••	Obtained recursively as above	yes
EP- correlation	$p(\Phi_n, \Phi_m,)$	$ \begin{array}{l} \langle v_n^{c_n} v_m^{c_m} \cos(c_n n \Phi_n + c_m m \Phi_m +) \rangle \\ \sum_k k c_k = 0 \end{array} $	yes
Mixed- correlation	$p(v_l, \Phi_n, \Phi_m,)$	$ \begin{cases} \langle v_l^2 v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle - \\ \langle v_l^2 \rangle \langle v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle \\ \sum_k k c_k = 0 \end{cases} $	yes

Summary-II

Rich patterns forward/backward EbyE flow fluctuations:

$$\vec{v}_n(\eta) \approx c_n(\eta) \left[\alpha(\eta) \vec{\epsilon}_n^{\mathrm{F}} + (1 - \alpha(\eta)) \vec{\epsilon}_n^{\mathrm{B}} \right]$$

Event-shape selection and event twist techniques

 New avenue to study initial state fluctuations, particle production and collective expansion dynamics.