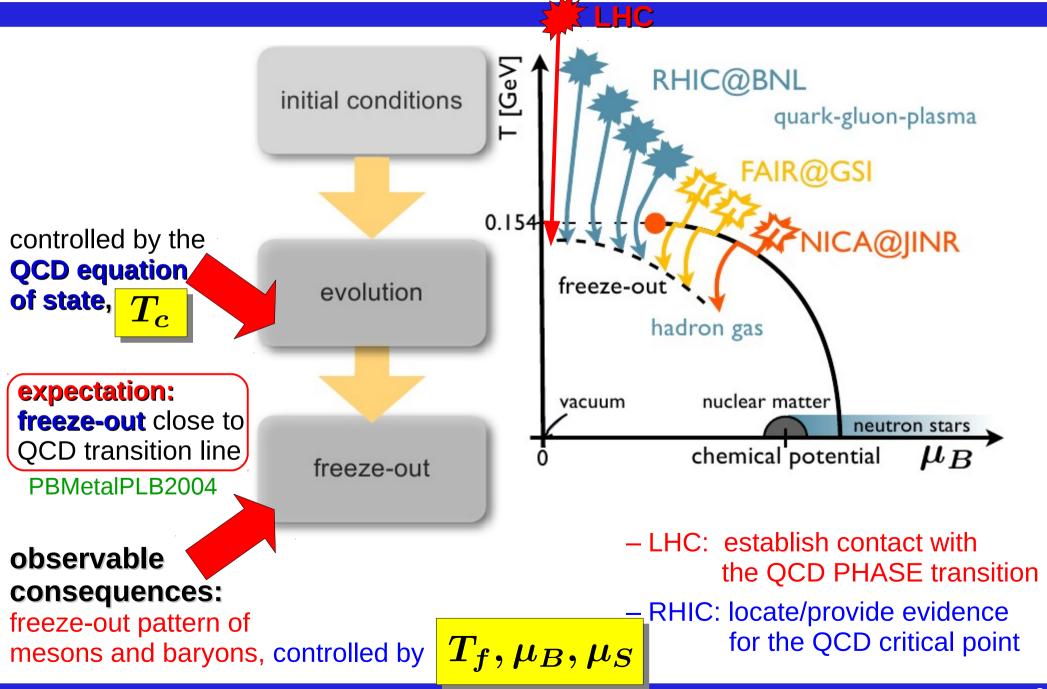
Lattice QCD and the search for the critical point

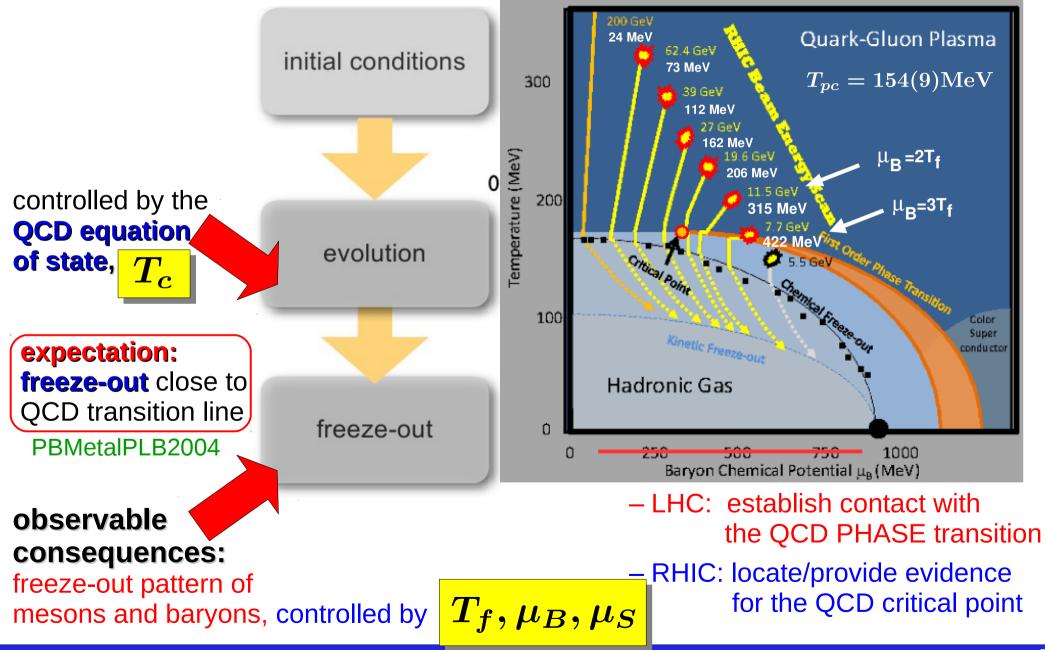
Frithjof Karsch

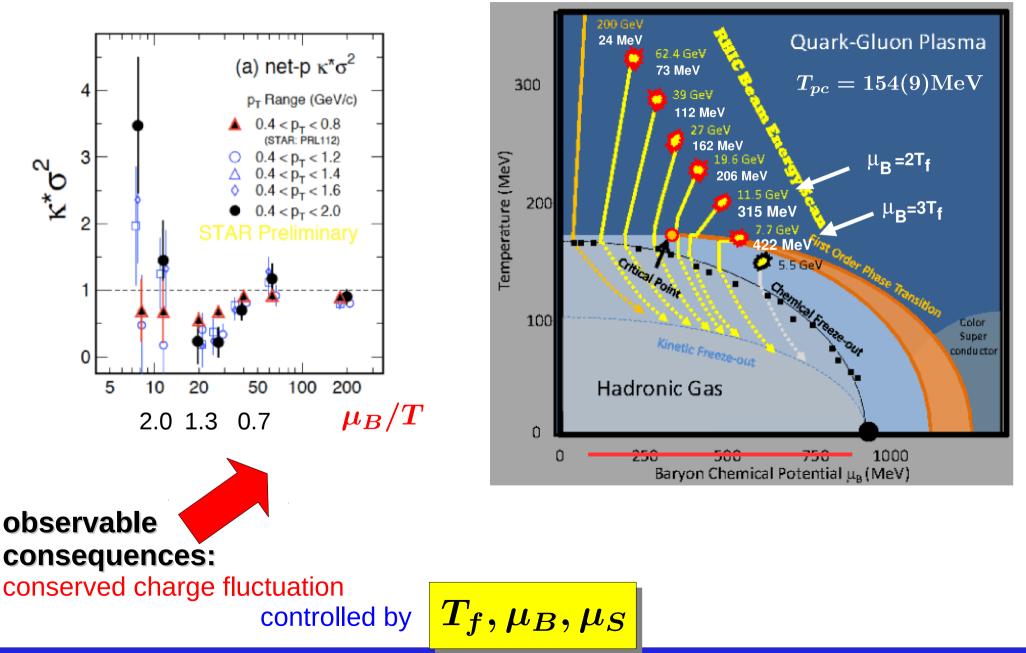
Brookhaven National Laboratory & Bielefeld University

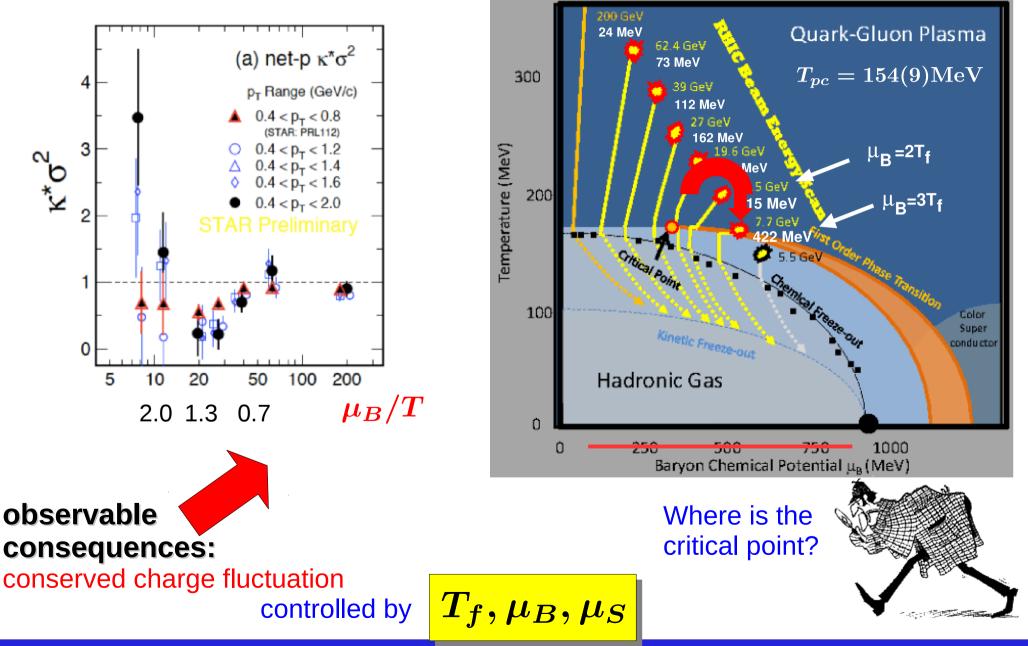
OUTLINE

- the QCD critical point
- EoS at non-zero baryon chemical potential
- cumulant ratios of conserved charge fluctuations
- freeze-out conditions from QCD
- power of Taylor expansions

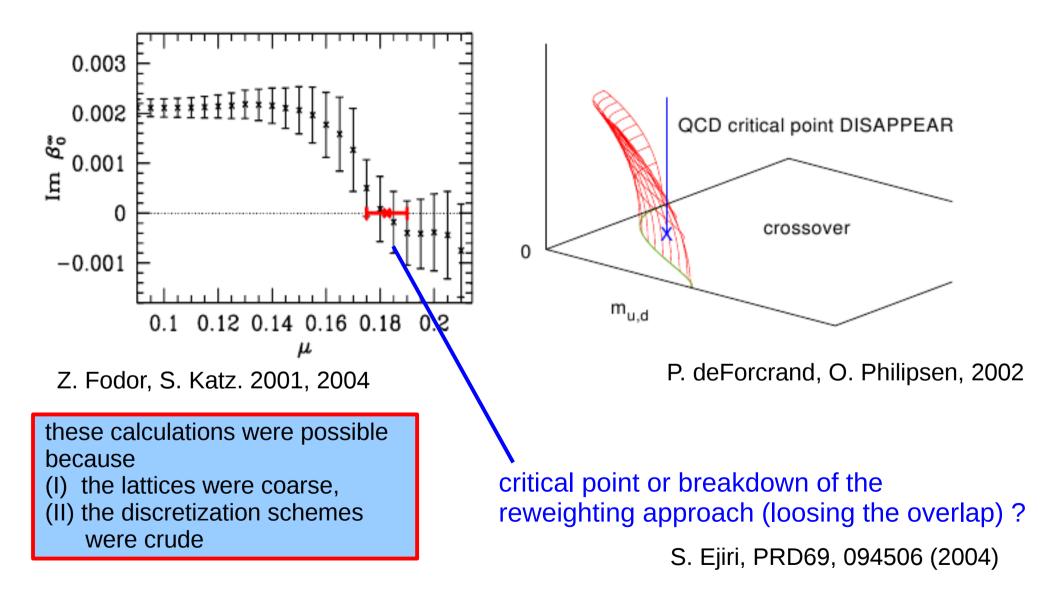








LGT attempts to find the critical point



since 10 years no progress along this line

Taylor expansion of the pressure and critical point

$$rac{P}{T^4} = \sum_{n=0}^{\infty} rac{1}{n!} \chi^B_n(T) \left(rac{\mu_B}{T}
ight)^n$$

for simplicity : $\mu_Q=\mu_S=0$

estimator for the radius of convergence:

$$\left(rac{\mu_B}{T}
ight)_{crit,n}^{\chi}\equiv r_n^{\chi}=\sqrt{\left|rac{n(n-1)\chi_n^B}{\chi_{n+2}^B}
ight|}$$

 radius of convergence corresponds to a critical point only, iff

 $\chi_n > 0 ext{ for all } n \geq n_0$

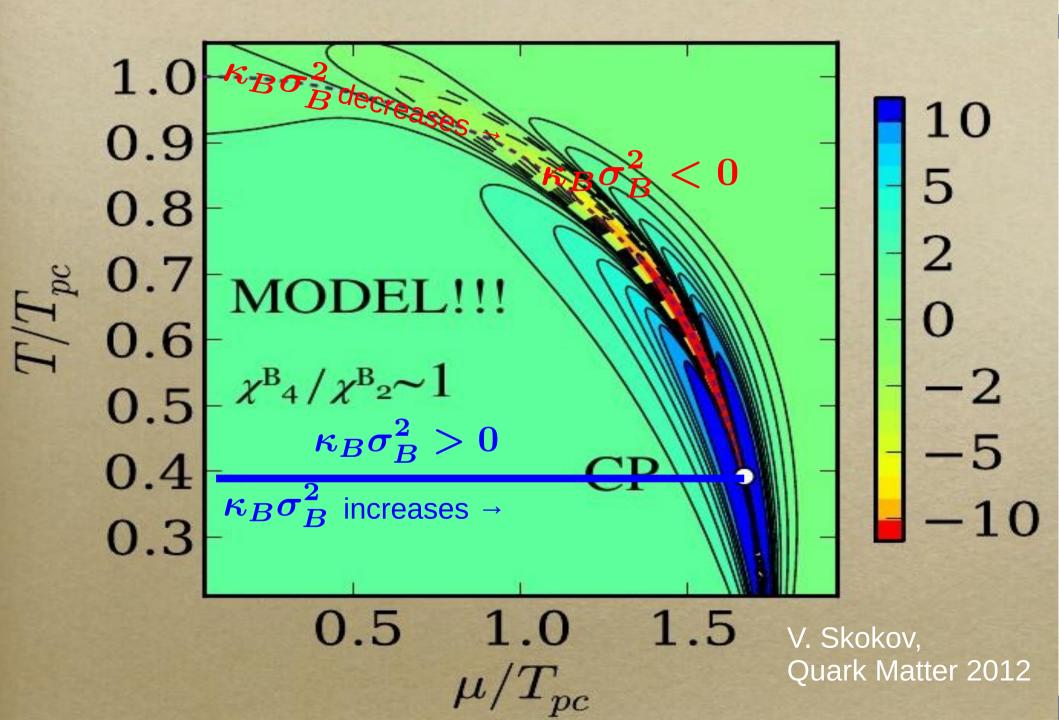
forces P/T^4 and $\chi^B_n(T,\mu_B)$ to be monotonically growing with μ_B/T

at T_{CP} : $\kappa_B \sigma_B^2 = \frac{\chi_4^B(T, \mu_B)}{\chi_2^B(T, \mu_B)} > 1$

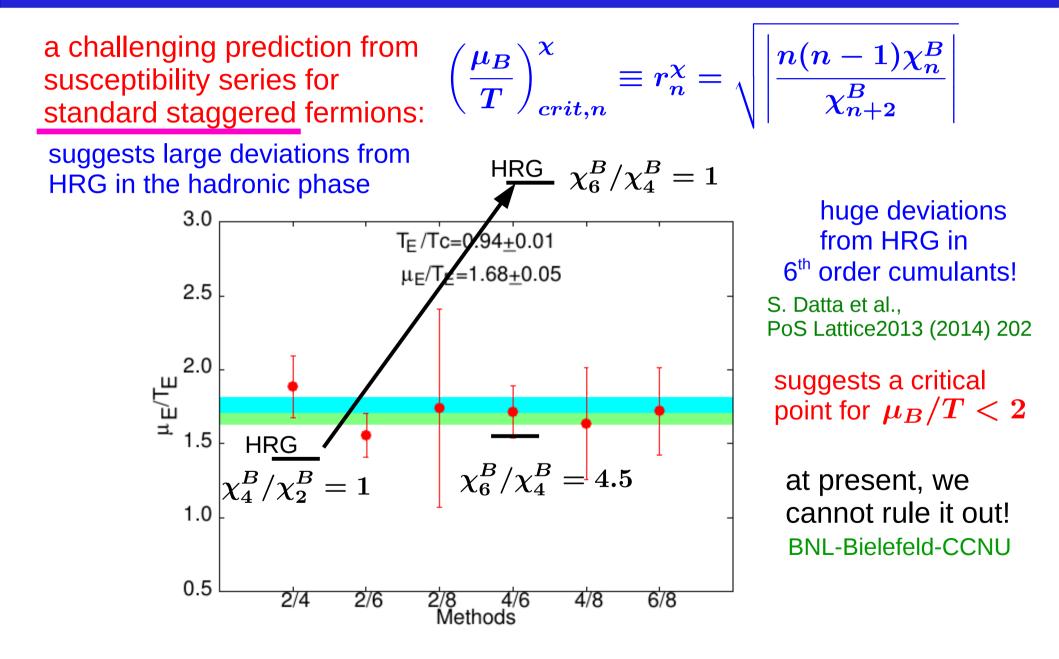
if not:

- radius of convergence does not determine
 the critical point
- Taylor expansion can not be used close to the critical point

Chiral model and negative $\chi^{B}_{4}/\chi^{B}_{2}$:



Estimates of the radius of convergence

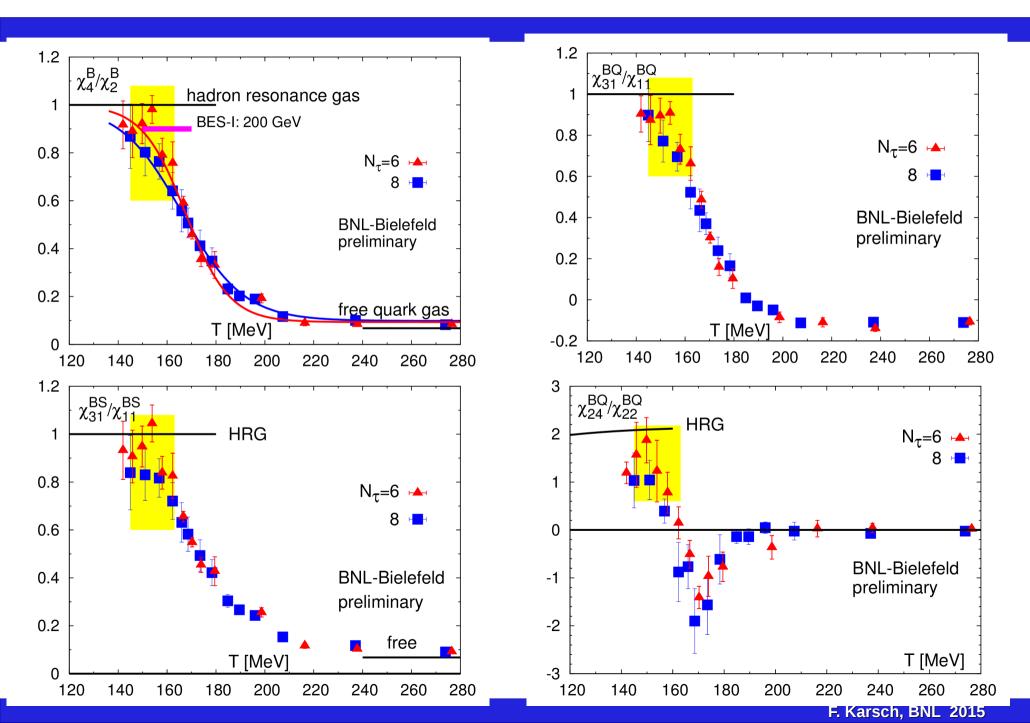


Taylor expansion of the EoS and critical point

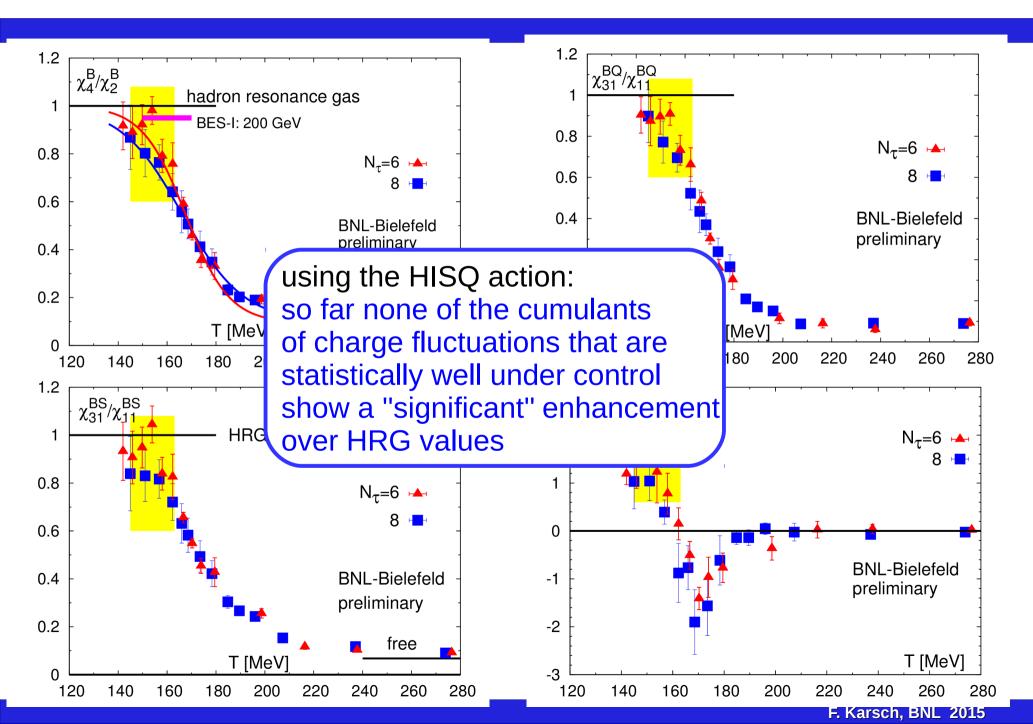
$$\begin{aligned} \frac{p}{T^4} &= \frac{1}{VT^3} \ln Z(V, T, \mu_B, \mu_S, \mu_Q) \\ &= \sum_{i,j,k} \frac{1}{i!j!k!} \chi^{BQS}_{ijk} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k \end{aligned}$$
generalized susceptibilities: $\chi^{BQS}_{ijk} &= \frac{\partial^{i+j+k}p/T^4}{\partial \hat{\mu}^i_B \partial \hat{\mu}^j_Q \partial \hat{\mu}^k_S} \bigg|_{\mu=0}$

– valid up to radius of convergence: μ_c (critical point?)

Some 4th and 6th order cumulants



Some 4th and 6th order cumulants



$$\frac{P}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi^{BQS}_{i,j,k}(T) \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

the simplest case: $\mu_S = \mu_Q = 0$

$$\frac{P(T,\mu_B)}{T^4} = \frac{P(T,0)}{T^4} + \frac{\chi_2^B(T)}{2} \left(\frac{\mu_B}{T}\right)^2 + \frac{\chi_4^B(T)}{24} \left(\frac{\mu_B}{T}\right)^4 + \mathcal{O}((\mu_B/T)^6)$$

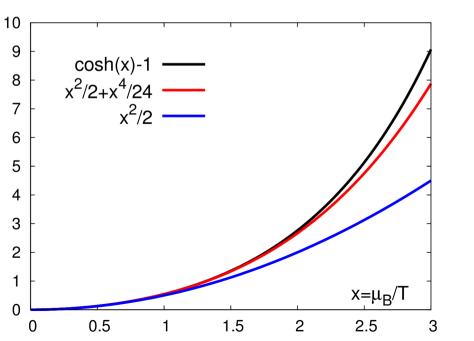
$$egin{aligned} rac{P}{T^4} = \sum_{i,j,k=0}^\infty rac{1}{i!j!k!} \chi^{BQS}_{i,j,k}(T) \left(rac{\mu_B}{T}
ight)^i \left(rac{\mu_Q}{T}
ight)^j \left(rac{\mu_S}{T}
ight)^k \end{aligned}$$

the simplest case: $\mu_S = \mu_Q = 0$

$$\frac{P(T,\mu_B)}{T^4} = \frac{P(T,0)}{T^4} + \frac{\chi_2^B(T)}{2} \left(\frac{\mu_B}{T}\right)^2 + \frac{\chi_4^B(T)}{24} \left(\frac{\mu_B}{T}\right)^4 + \mathcal{O}((\mu_B/T)^6)$$

An $\mathcal{O}((\mu_B/T)^4)$ expansion is exact in a QGP up to $\mathcal{O}(g^2)$ How good is an $\mathcal{O}((\mu_B/T)^4)$ expansion in a HRG?

– deviation is less than 3% at $\mu_B/T=2$



F. Karsch, BNL 2015

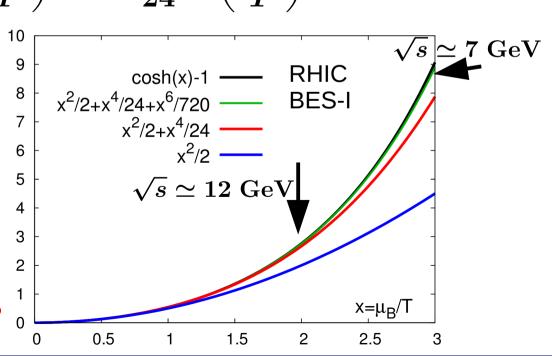
$$\left(\frac{P}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi^{BQS}_{i,j,k}(T) \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k\right)$$

the simplest case: $\mu_S = \mu_Q = 0$

$$\frac{P(T,\mu_B)}{T^4} = \frac{P(T,0)}{T^4} + \frac{\chi_2^B(T)}{2} \left(\frac{\mu_B}{T}\right)^2 + \frac{\chi_4^B(T)}{24} \left(\frac{\mu_B}{T}\right)^4 + \mathcal{O}((\mu_B/T)^6)$$

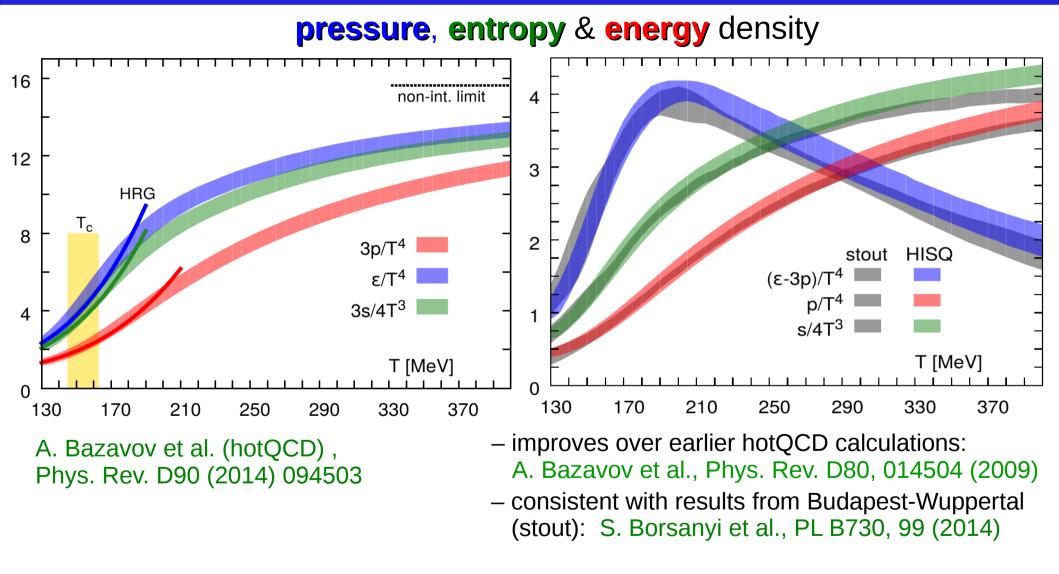
An $\mathcal{O}((\mu_B/T)^4)$ expansion is exact in a QGP up to $\mathcal{O}(g^2)$ How good is an $\mathcal{O}((\mu_B/T)^4)$ expansion in a HRG?

– an $\mathcal{O}((\mu_B/T)^6)$ expansion is almost perfect up to $\mu_B/T=3$



F. Karsch, BNL 2015

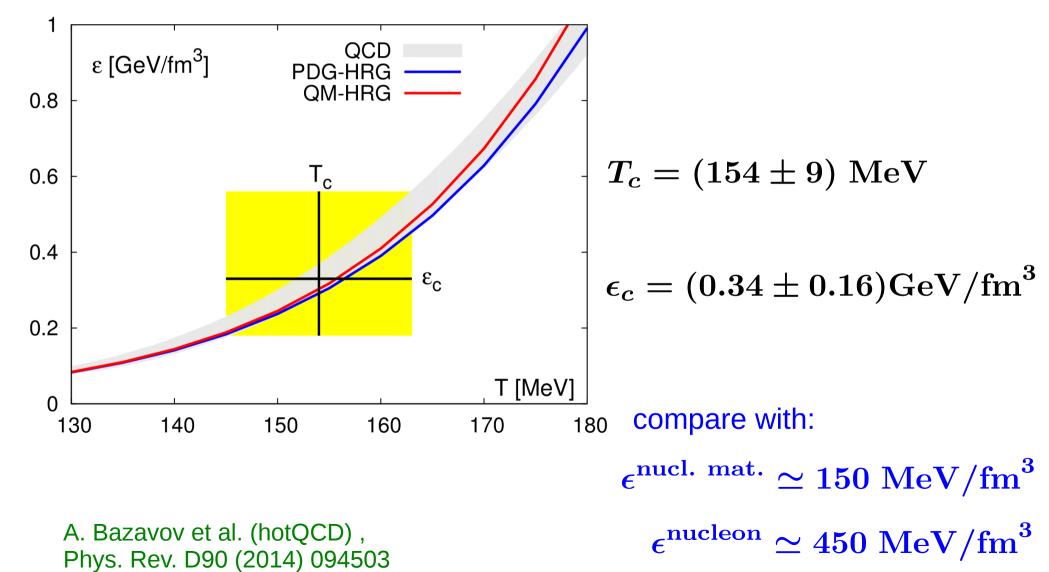
Equation of state of (2+1)-flavor QCD



 up to the crossover region the QCD EoS agrees quite well with hadron resonance gas (HRG) model calculations; However, QCD results are systematically above HRG

Crossover transition parameters

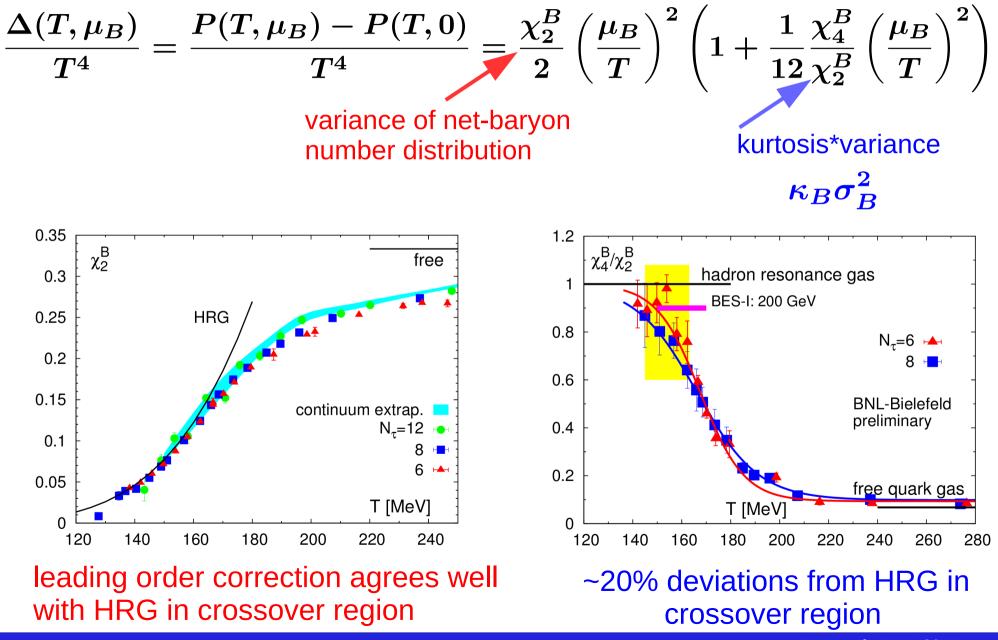
PDG: Particle Data Group hadron spectrum QM: Quark model hadron spectrum



$$\left(egin{array}{l} \displaystyle rac{P}{T^4} = \sum_{i,j,k=0}^{\infty} \displaystyle rac{1}{i!j!k!} \chi^{BQS}_{i,j,k}(T) \left(\displaystyle rac{\mu_B}{T}
ight)^i \left(\displaystyle rac{\mu_Q}{T}
ight)^j \left(\displaystyle rac{\mu_S}{T}
ight)^k \end{array}
ight)^k$$

the simplest case: $\mu_S = \mu_Q = 0$

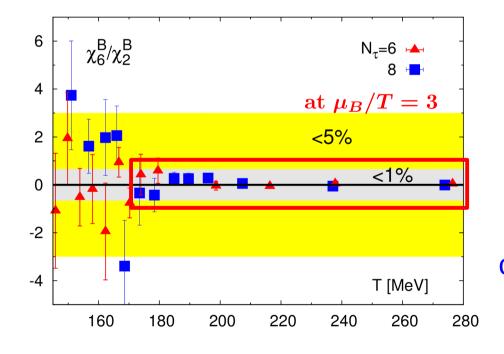
$$\frac{\Delta(T,\mu_B)}{T^4} = \frac{P(T,\mu_B) - P(T,0)}{T^4} = \frac{\chi_2^B}{2} \left(\frac{\mu_B}{T}\right)^2 \left(1 + \frac{1}{12}\frac{\chi_4^B}{\chi_2^B} \left(\frac{\mu_B}{T}\right)^2\right)$$
variance of net-baryon
number distribution
kurtosis*variance
 $\kappa_B \sigma_B^2$



F. Karsch, BNL 2015

$$\frac{\Delta(T,\mu_B)}{T^4} = \frac{P(T,\mu_B) - P(T,0)}{T^4} = \frac{\chi_2^B}{2} \left(\frac{\mu_B}{T}\right)^2 \left(1 + \frac{1}{12}\frac{\chi_4^B}{\chi_2^B} \left(\frac{\mu_B}{T}\right)^2\right)$$

estimating the $\mathcal{O}((\mu_B/T)^6)$ correction: $\sim \frac{1}{720}\frac{\chi_6^B}{\chi_2^B} \left(\frac{\mu_B}{T}\right)^6$



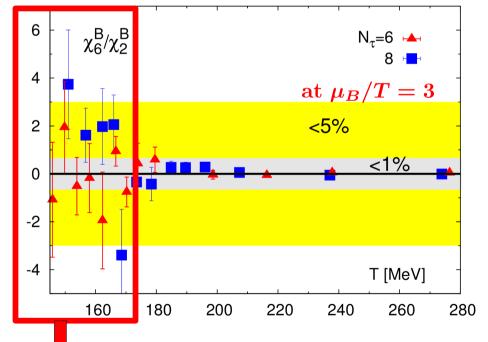
bands: magnitude of 6th order contribution relative to total of 0th, 2nd and 4th order

for $\mu_B/T \leq 2$:

 $\mathcal{O}((\mu_B/T)^6)$ corrections to P/T^4 contribute less than 1% for T>170 MeV

$$\frac{\Delta(T,\mu_B)}{T^4} = \frac{P(T,\mu_B) - P(T,0)}{T^4} = \frac{\chi_2^B}{2} \left(\frac{\mu_B}{T}\right)^2 \left(1 + \frac{1}{12}\frac{\chi_4^B}{\chi_2^B} \left(\frac{\mu_B}{T}\right)^2\right)$$

estimating the $\mathcal{O}((\mu_B/T)^6)$ correction: $\sim \frac{1}{720}\frac{\chi_6^B}{\chi_2^B} \left(\frac{\mu_B}{T}\right)^6$



bands: magnitude of 6th order contribution relative to total of 0th, 2nd and 4th order

for $\mu_B/T \leq 2$:

 ${\cal O}((\mu_B/T)^6)$ corrections to P/T^4

contribute less than 1% for T>170 MeV and less than ~ 5% for 150 MeV < T < 170 MeV

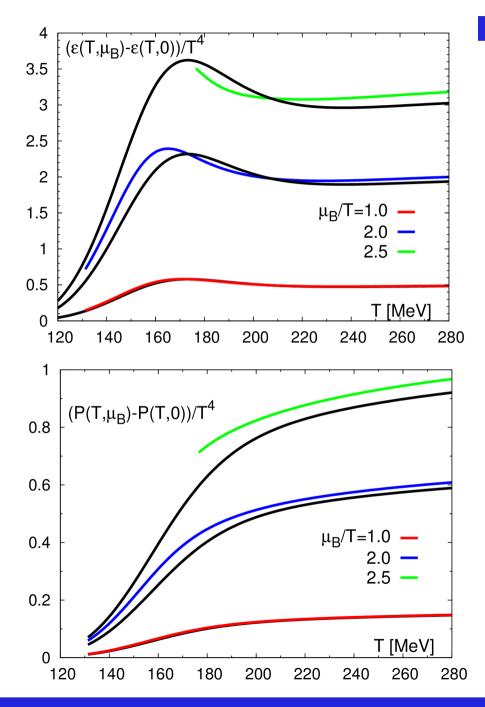
crucial: control 6th order cumulants in and below the crossover region

$$\frac{\Delta(T,\mu_B)}{T^4} = \frac{P(T,\mu_B) - P(T,0)}{T^4} = \frac{\chi_2^B}{2} \left(\frac{\mu_B}{T}\right)^2 \left(1 + \frac{1}{12} \frac{\chi_4^B}{\chi_2^B} \left(\frac{\mu_B}{T}\right)^2\right)$$
estimating the $\mathcal{O}((\mu_B/T)^6)$ correction: $\sim \frac{1}{720} \frac{\chi_6^B}{\chi_2^B} \left(\frac{\mu_B}{T}\right)^6$

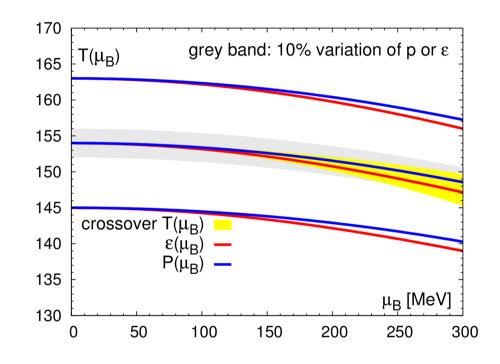
$$\int_{0}^{4} \frac{\chi_6^B/\chi_2^B}{\chi_6^B/\chi_2^B} \frac{\chi_{B/T}^B}{\chi_{C}^B/$$

F. Karsch, BNL 2015

Lines of constant thermodynamics and freeze-out

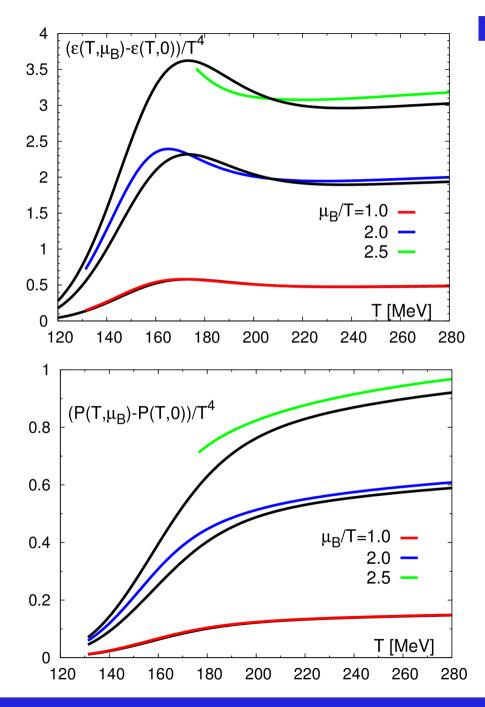


black lines: ${\cal O}(\mu_B^2)$ colored lines: ${\cal O}(\mu_B^4)$

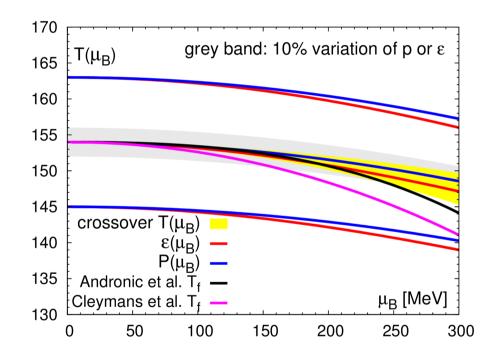


 $\mathcal{O}(\mu_B^4)$ is shown only when the estimated $\mathcal{O}(\mu_B^6)$ contribution is smaller than 5%

Lines of constant thermodynamics and freeze-out



black lines: ${\cal O}(\mu_B^2)$ colored lines: ${\cal O}(\mu_B^4)$



energy density and pressure decrease on the commonly used phenomenological freeze-out curves, but stay approximately constant on the crossover line for

$$\mu_B/T{\lesssim}2$$

$$\frac{\Delta(T,\mu_B)}{T^4} = \frac{P(T,\mu_B) - P(T,0)}{T^4} = \frac{\chi_2^B}{2} \left(\frac{\mu_B}{T}\right)^2 \left(1 + \frac{1}{12} \frac{\chi_4^B}{\chi_2^B} \left(\frac{\mu_B}{T}\right)^2\right)$$
kurtosis*variance
$$\left(\kappa_B \sigma_B^2\right) \mu_B/T = 0$$
Controls also leading terms
in several ratios of conserved
charge fluctuations
$$N_{t=6}$$

$$BNL-Bielefeld
preliminary
Interpret to the several ratio of the$$

$$\frac{\Delta(T,\mu_B)}{T^4} = \frac{P(T,\mu_B) - P(T,0)}{T^4} = \frac{\chi_2^B}{2} \left(\frac{\mu_B}{T}\right)^2 \left(1 + \frac{1}{12} \frac{\chi_4^B}{\chi_2^B} \left(\frac{\mu_B}{T}\right)^2\right)$$

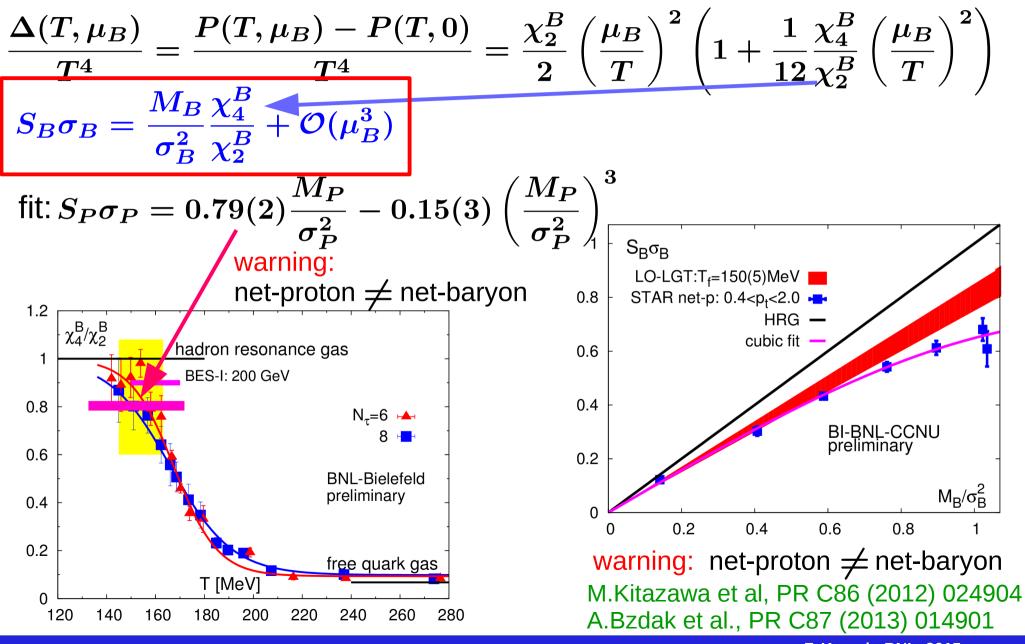
$$\frac{M_B}{\sigma_B^2} = \frac{\mu_B}{T} + \mathcal{O}(\mu_B^3)$$

$$S_B \sigma_B = \frac{\mu_B}{T} \frac{\chi_4^B}{\chi_2^B} + \mathcal{O}(\mu_B^3)$$

$$S_B \sigma_B = \frac{M_B}{\sigma_B^2} \frac{\chi_4^B}{\chi_2^B} + \mathcal{O}(\mu_B^3)$$

$$Warning: net-proton \neq net-baryon M.Kitazawa et al, PR C36 (2012) 024904$$
A.Bzdak et al., PR C87 (2013) 014901

F. Karsch, BNL 2015



F. Karsch, BNL 2015

Next order: depends on 6th order cumulants and requires knowledge on the parametrization of the freeze-out curve, eg.

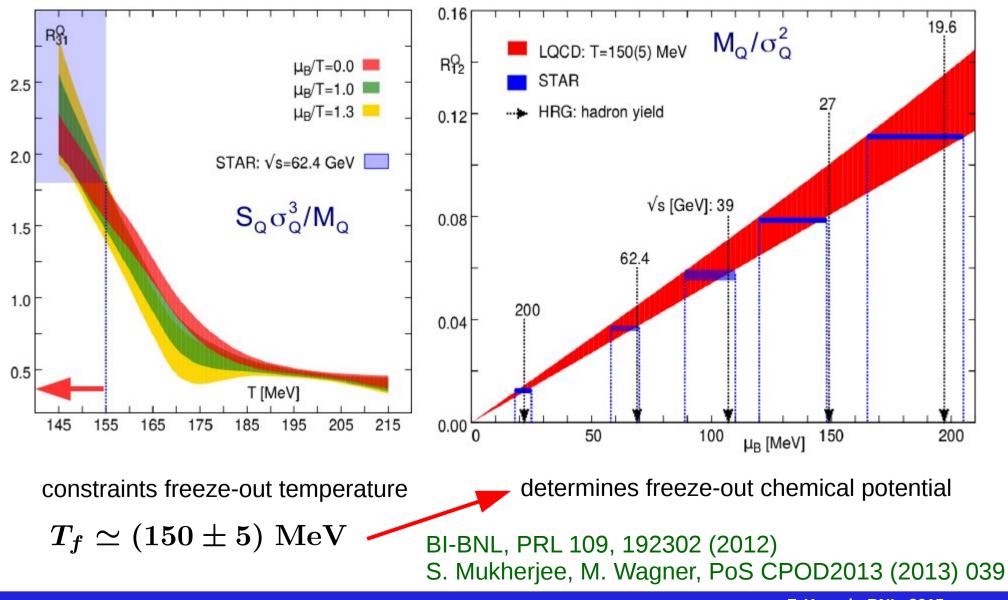
$$T_f(\mu_B) = T_f(0) \left(1 - \kappa_f \left(rac{\mu_B}{T}
ight)^2
ight)$$

ratio of cumulants on "a line" in the (T, μ_B) plane

— 2nd order, O(4) — 2nd order, Z(2)

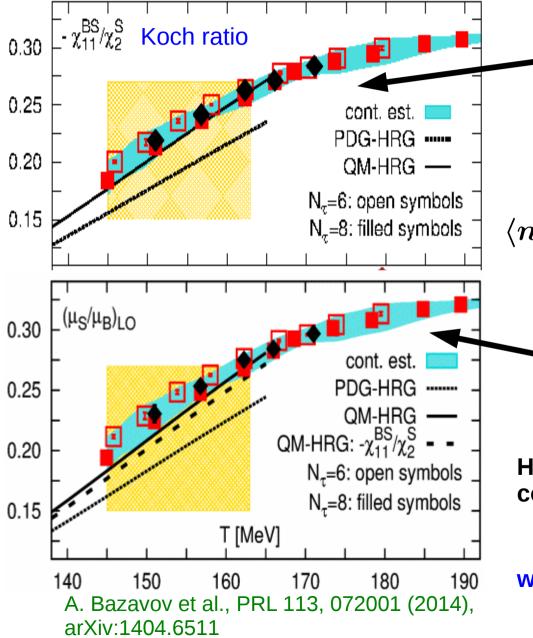
Freeze-out parameter from conserved charge fluctuations

cumulant ratios of electric charge fluctuations



F. Karsch, BNL 2015

Strangeness vs. baryon chemical potential



enhanced

strangeness-baryon correlation over strangeness fluctuations

strangeness neutrality

enforces relation between chemical potentials

$$\langle n_S
angle = 0$$

= $\chi_2^S \hat{\mu}_S^2 + \chi_{11}^{BS} \hat{\mu}_S \hat{\mu}_B + \mathcal{O}(\mu^4)$
 $\frac{\mu_S}{\mu_B} = -\frac{\chi_{11}^{BS}}{\chi_2^S} + \mathcal{O}(\mu^2)$

HRG provides good guidance for thermal conditions at freeze-out. However,

HRG is not QCD

we need/want a self-consistent determination of freeze-out parameters based on QCD

Kurtosis*variance on the freeze-out line

$$\kappa_{B}\sigma_{B}^{2} = \frac{\chi_{4}^{B}}{\chi_{2}^{B}}\frac{1+\frac{1}{2}\chi_{4}^{B}}{\chi_{2}^{B}}\frac{\left(\frac{\mu_{B}}{T}\right)^{2}}{1+\frac{1}{2}\chi_{2}^{A}} \simeq \frac{\chi_{4}^{B}}{\chi_{2}^{B}}\left(1-\frac{1}{2}\left(\frac{\chi_{4}^{B}}{\chi_{2}^{B}}-\frac{\chi_{6}^{B}}{\chi_{4}^{B}}\right)\left(\frac{\mu_{B}}{T}\right)^{2}\right)$$

$$\xrightarrow{K_{B}\sigma_{B}^{2}} \xrightarrow{\text{STAR: 0.4-cp-c2.0}}_{(J_{\mu})^{2},\chi_{6}^{B}=0} \xrightarrow{H_{R}}_{(J_{\mu})^{2},\chi_{6}^{B}=0} \xrightarrow{(L_{G}: O(\mu_{B}^{2}),\chi_{6}^{B}=0},\chi_{4}^{B}=0} \xrightarrow{(L_{G}: O(\mu_{B}^{2}),\chi_{6}^{B}=0},\chi_{6}^{B}=0} \xrightarrow{(L_{G}: O(\mu_{B}^{2}),\chi_{6}^{B}=0},\chi_{6}^{B}=0} \xrightarrow{(L_{G}: O(\mu_{B}^{2}),\chi_{6}^{B}=0},\chi_{6}^{B}=0} \xrightarrow{(L_{G}: O(\mu_{B}^{2}),\chi_{6}^{B}=0} \xrightarrow{(L_{G}: O(\mu_{B}^{2}),\chi_{6}^{B}=0} \xrightarrow{(L_{G}: O(\mu_{B}^{2}),\chi_{6}^{B}=0} \xrightarrow{(L_{G}: O(\mu_{B}^{2}),\chi_{6}^{B}=0} \xrightarrow{($$

To do list

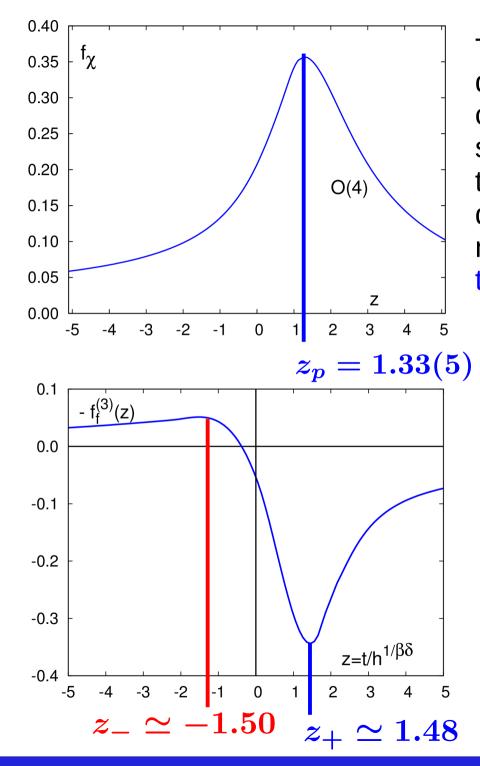
What is needed to understand equilibrium properties of conserved charge fluctuations on the freeze-out line?

- accurate lattice QCD results on 6th (and 8th) order cumulants of conserved charge fluctuations
- self-consistent determination of freeze-out parameters within QCD: $T_f(\mu_B), \ \mu_B, \ [\mu_S(\mu_B), \ \mu_Q(\mu_B)]$
- Quantify influence of finite-V, acceptance, p \neq B etc. in close interaction with experiment and HI-phenomenology

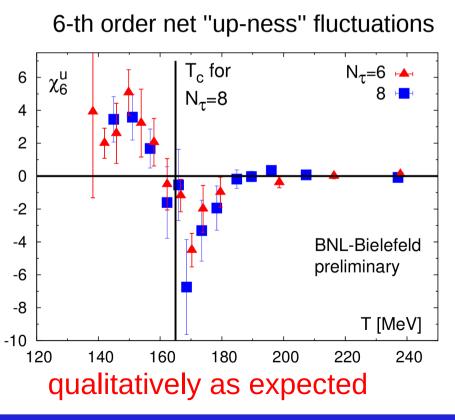
What can be done about "locating the critical point"?

- use 6th (and 8th) order cumulants to put bounds on its location
- keep working on new simulation techniques

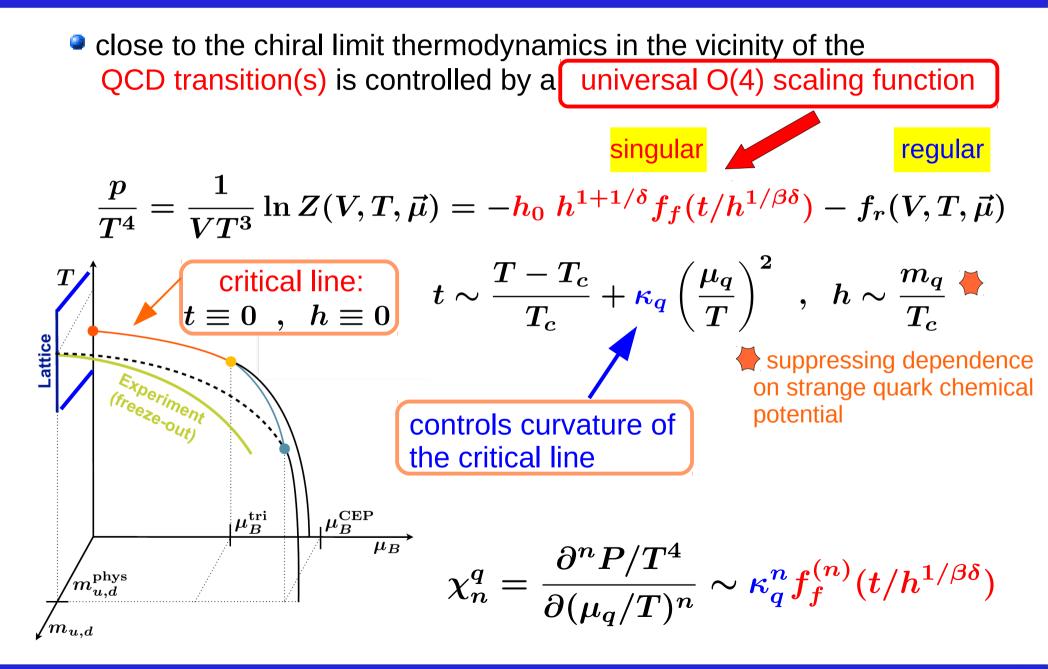
By-product: EoS in the entire parameter range accessible to the RHIC BES-II



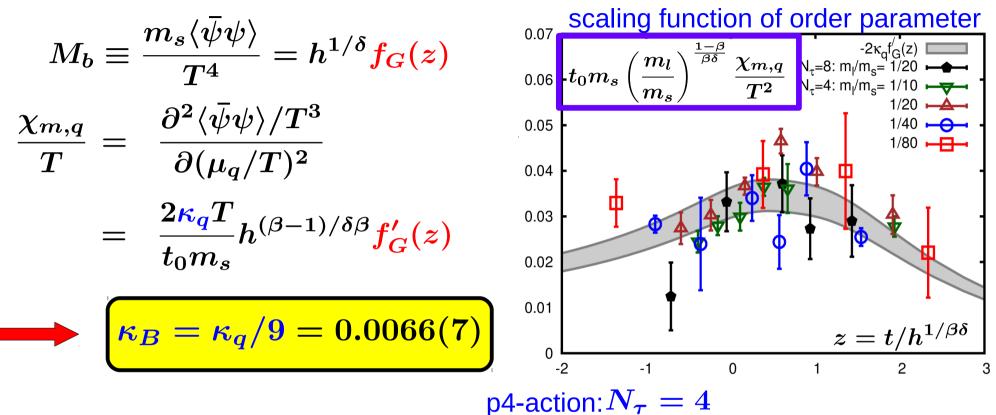
The peak in the scaling function that determines the location of the chiral crossover transition as seen by the chiral susceptibility is at (almost) the same temperature, at which the 6th order quark number susceptibility has its minimum – if contributions from regular terms are small!!



Chiral Transition at small $\,\mu_B/T$

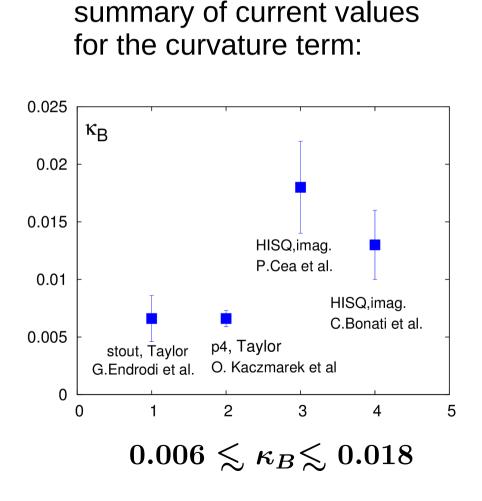


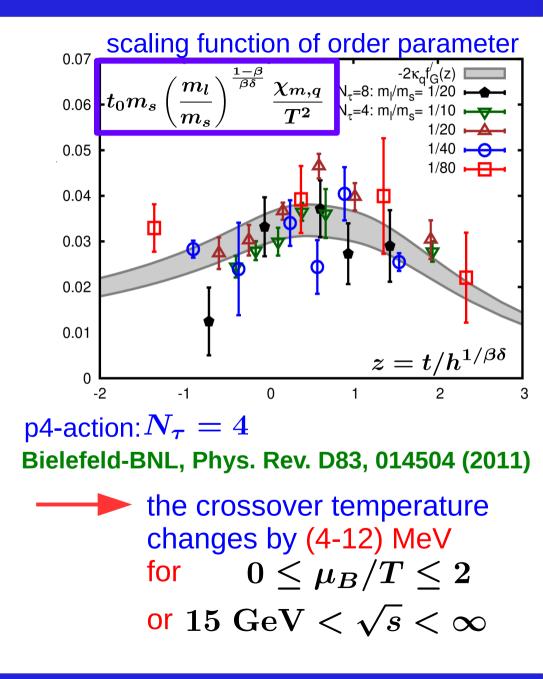
O(4) Scaling in QCD: Curvature of the critical line



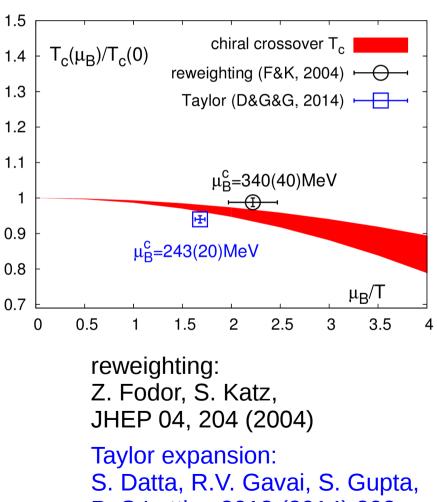
Bielefeld-BNL, Phys. Rev. D83, 014504 (2011)

O(4) Scaling in QCD: Curvature of the critical line





Critical Point searches



lattice QCD

PoS Lattice 2013 (2014) 202

F. Karsch, BNL 2015