Toward quantitative and rigorous conclusions from heavy ion collisions Scott Pratt, Michigan State University **MADAI** Collaboration

Ist MADAI Collaboration Meeting, SANDIA 2010

Models and Data Analysis Initiative http://madai.us

How this was done before (v2 and η/s) Study single parameter vs. single observable

PROBLEM

- v2 depends on
- viscosity

- saturation model pre-thermal flow • Eq. of State T-dependence of η/s
- initial T_{xx}/T_{zz}

Correct Way (MCMC)

Simultaneously vary N model parameters x_i Perform random walk weight by likelihood

$\mathcal{L}(\mathbf{x}|\mathbf{y}) \sim \exp\left\{-\sum_{i=1}^{n} \mathbf{x}_{i}^{T}\right\}$

• Use all observables y_a

$$\left\{ \frac{(y_a^{(\text{model})}(\mathbf{x}) - y_a^{(\text{exp})})^2}{2\sigma_a^2} \right\}$$

Obtain representative sample of posterior

I. Too Many Model Runs Requires running model ~10⁶ times

II. Many Observables Could be hundreds of plots, each with dozens of points **Complicated Error Matrices**

- I. Run the model ~1000 times Semi-random points (LHS sampling)
- 2. Determine Principal Components $(y_a - \langle y_a \rangle) / \sigma_a \rightarrow z_a$
- 3. Emulate *z*_a (Interpolate) for MCMC Gaussian Process...

$$\mathcal{L}(\mathbf{x}|\mathbf{y}) \sim \exp\left\{-\frac{1}{2}\sum_{a} (z_a^{(\text{emulator})}(\mathbf{x}) - z_a^{(\text{exp})})\right\}$$

Model Emulators

S. Habib, K. Heitman, D. Higdon, C. Nakhleh & B. Williams, PRD (2007)

x (arb)

Emulator Algorithms

- Gaussian Process
 - Reproduces training points
 - Assumes localized Gaussian covariance
 - Must be trained,
 - i.e. find "hyper parameters"
- Other methods also work

14 Parameters

- 5 for Initial Conditions at RHIC
- 5 for Initial Conditions at LHC
- 2 for Viscosity
- ♦ 2 for Eq. of State

30 Observables

- π,K,p Spectra $\langle p_t \rangle$, Yields
- Interferometric Source Sizes
- v_2 Weighted by p_t

5 parameters for RHIC, 5 for LHC

Equation of State and Viscosity $c_s^2(\epsilon) = c_s^2(\epsilon_h)$ $+ \left(\frac{1}{3} - c_s^2(\epsilon_h)\right) \frac{X_0 x + x^2}{X_0 x + x^2 + X'^2},$ $X_0 = X' R c_s(\epsilon) \sqrt{12},$ $x \equiv \ln \epsilon / \epsilon_h$

2 parameters for EoS, 2 for η/s

DATA Distillation

I. Experiments reduce PBs to 100s of plots

- 2. Choose which data to analyze Does physics factorize?
- 3. Reduce plots to a few representative numbers, y_a
- 4. Transform to principal components

Checking the Distillation Spectral information encapsulated by two numbers, dN/dy & $\langle p_t \rangle$

model spectra from 30 random points in parameter prior

74 pion spectra: with 573< $\langle p_t \rangle_{\pi}$ < 575 MeV

44 proton spectra: with $1150 < \langle p_t \rangle_p < 1152 \text{ MeV}$

Two Calculations

1. J.Novak, K. Novak, S.P., C.Coleman-Smith & R.Wolpert, ArXiv:1303.5769 **RHIC Au+Au Data** 6 parameters

2. S.P., E.Sangaline, P.Sorensen & H.Wang, in progress **RHIC Au+Au and LHC Pb+Pb Data** 14 parameters, include Eq. of State

Sample Spectra from Prior and Posterior

Sample V2 from Prior and Posterior

Sample HBT from Prior and Posterior

n/s(T)

Κ

0.0

$\eta/s = (\eta/s)_0 + \kappa \ln(T/165)$

η/s vs saturation picture

See Drescher, Dumitru, Gombeaud and Ollitrault PRC 2007

Eq. of State

Which observables constrain the EoS?

Sensitivity to Uncertainty

SUMMARY

Robust

- Emulation works splendidly
- Scales well to more parameters & more data
- Eq. of State and Viscosity can be extracted from RHIC & LHC data
- Other parameters not as well constrained
- Heavy-lon Physics can be a Quantitative Science!!!!

NEAR FUTURE

- Improve models (will lead to more parameters) hadronization uncertainties
- bulk viscosity
- more realistic cascade Bose enhancement, better cross sections 3D corrections
- Iumpy IC
- Better statements of uncertainty Requires cooperation, both experimenters and theorists
- Extend to different analyses Initial state studies

 - Jet Physics

BEAM ENERGY SCAN

- Improve models (MANY more parameters) 3D Initial Conditions baryon stopping, initial flow and rotation, initial temperatures, corona
 - Paramterize IC
 - Density Dependent EoS
 - Mean-field for hadronic Boltzmann
- Statistics may require rethinking • $N_{\text{parameters}} \sim 50$
- Should be able to determine $P(\rho,T)$

If you're interested...

- I. Tools are readily extended
- 2. Download software and tutorial from http://madai.us
- 3. Talk to me (prattsc@msu.edu) or Evan Sangaline (<u>esangaline@gmail.com</u>)

Made possible by contributions from DOE, NSF, Chris Coleman-Smith, John Novak, Kevin Novak, Evan Sangaline, Paul Sorensen, Joshua Vredevoogd, Hui Wang, Robert Wolpert, and viewers like you.

Additional slide: Charge BFs and charge susceptibilities

S.P., C. Ratti and W.McCormack, arXiv:1409.2164

