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Plan of the talk:

1. History of the problem. Hopes and expecta-
tions.

2. Current-nucleus (j = —3F . F5,) and pA gluon
production in covariant gauge 0 - A = 0 (multiple

rescatterings).

3. Light cone gauge (everything is in the wave
function):

a. An example of the nucleus—currents scatter-

ing (.7 - _%FSVFSV)'

b. pA in light cone gauge.



1. History of the problem. Hopes and ex-
pectations. _

Approach of L. McLerran and R. Venugopalan

(Phys. Rev. D 49, 2233 (1994); 49, 3352 (1994); 50, 2225 (1994))
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= Treat nucleus as a classical source for light cone gauge calculations to
obtain non—-Abelian Weizsacker-Williams field of a nucleus

= Use the higher momentum components as a source for the softer fields,
iterate this procedure to obtain BFKL equation, and subleading corrections

to it (see hep-ph/9706377 and hep-ph/9709432)
But: very hard to solve.
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Non-Abelian Weizsacker—Williams field for
a large nucleus.

found simultaneously by McLerran et al in Phys.Rev. D 55 5414 (1997)
and Yu. K. in Phys. Rev. D 54, 5463 (1996) -

In our approach we start with the exact solution of the classical QCD equa-
tions of motion in covariant gauge, which corresponds to a single gluon
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and make a gauge transformation to the A, = 0 light cone gauge:
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This is the non-Abelian Weizsacker-Williams field generated by valence
quarks. “Nucleons” were taken to be quark—antiquark pairs (onia).
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(A(z,z_-)) = 0, so the field is not quite classical,
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The Feynman diagrams corresponding to this
non-Abelian Weizsacker—Williams field are:

see Yu. K. , Phys.Rev. D 55 5445 (1997)
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The principle behind is the Ward identity:
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At the higher orders (g°):

Color average in the color space of the left nucleon to get classical field.
Two gluons per nucleon limit.
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L. McLerran and collaborators found in Phys.Rev. D 55 5414 (1997) the
expectation in the nuclear wavefunction of the product of two gluon fields:
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where z; = |z—y| and x(y) is some function of the longitudinal coordinates.

(A2, 2-) A (yv-)) =

This object was associated with the nuclear gluon distribution function

G 4(z, Q).

The plot of the function versus the gluon’s transverse momentum is
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Nuclear Collisions in the Quasi—Classical Ap-
proximation . -

(for some efforts to attack the problem see: Dirk Rischke and Yu. K. in
Phys.Rev. C 56 1084 (1997) and A. Kovner et al in Phys. Rev. D 52, 6231

(1995); 52, 3809 (1995)) I
A + E( Ao z A%)
L. McLerran and collaborators tried to solve the classical QCD equations

of motion in z_A, + 2, A_ = 0 gauge perturbatively to the next to lowest
order. They interpreted the result diagrammatically as

However: the idea << ai“trq_cfu‘.ve: !

bat: hard to check ar g Jeuge

l'u:n.s, no momentum sPace
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Dirk Rlschke and myself solved the same problem in@- A = 0 gauge and
gave an exact connection to the diagrams:

P p'-k+y p’ p-k+q p' p-k+q

However, all these calculations still describe the weak field limit. It also
would be quite interesting if the fields fusion assumptionswere true.

S-MQ*auaqq, B-r"c'illﬂr, D. P*‘SCLL!



2. _Gluon Production in Current—Nucl
and Nucleon—Nucleus Collisions in Covgglggi
Gauge or in A_ =0 Gauge

j=—iFaF d “’Tm ”*7&‘:

In our model we neglect QCD evolution of the gluon structure functions
in the nucleons. The gluon structure function in the nucleons is taken to

be 2G(z, Q) = °C= In(Q?/u?).

We limit the interactions of the gluon propagating through the nucleus
with the nucleons by two gluons per nucleon limit. The strong field limit
corresponds to a2 A% 1, with A’the number of nucleon’s along the gluon’s
path.
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This is Glauber expansion in terms of multiple scatterings. The gluon
produced in the current—nucleon interaction rescatters in the nucleus both
elastically and inelastically.

The gluon—nucleon interactions can be given by the following graphs in

covariant gauge (but only the first of them survives in the A_ = 0 gauge):
+ + + + =+
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The gluon production in current-nucleon interaction is local:
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First stage is gluon production in current-nucleon interaction. In covari-
ant gauge it’s given by the graph:

- Thae Pc.znh-.ah vaules for the vertex:

Vap T Jup E (0D — G (-3

The number density of the produced gluons is given by the unintegrated

gluon distribution of the nucleon:
dNo(l) _ 1dNo(l) _ 18zG(z, )
2 o od? T r o

where, in our approximation, we neglect the QCD evolution in the structure
functions.

For a gluon produced with a transverse momentum [;, longitudinal co-
ordinate zy and impact parameter b define the probability distribution
f(b, 20, lo, 2,1) for the gluon to have transverse momentum [ at a longi-

tudinal position z. The probability conservation yields:

/d2lf(ba zOJ—U) Z,l_) =1
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Knowing the probability distribution of the gluons we may write down

an expression for the number density of gluons produced in the nucleus:

aN(l) _ 2y dNo(D)
2 g,

for the gluon away from the fragmentation region. The normal nuclear

——=>d*bdzop(b, 20) f (b, 20, Lo, 2, 1) | ,_ /7=,

density p(b, zo) is normalized according to

[ d*bdzg p(b, 29) = A
.Our goal now is to find f. It obeys the following equation:

& fal) = 3 F (D) + po [SUVE) (21 1)

with

f(20,L) = 6(L — Lo)
and
1do ¢
b= od?l

the normalized gluon—nucleon scattering amplitude with ! the momentum

4

transfer.

is the mean free path of gluons in nuclear matter.
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This equation can be derived from Glauber multiple scattering formalism
(see R. Baier et al in Nucl. Phys. B 484 265 (1997)) or can be derived
from the field—theoretical approach:

D 1) = ~35D) + oo [EUVT) fo L~ 1)

The first term on the right-hand side corresponds to elastic scattering (vir-
tual term), the second one corresponds to inelastic scattering.
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Solving the equation:

0 1 , ,
}9_zf(z’]‘) = —Xf(z,l) +po [dU V() f(z,l-1),
going to transverse coordinate space
fz,21) = [dP1em 02 f (2, 1)

we obtain

0 - 1
f(z.2%) = —2k0(e?) flz, %),

with

Flzoa?) =1, o= §we(i-€" v

’

R L -
and where = 4% f.!e (1- T(ex)) V(€)=

4
~ 2 LS
U(mj_) - E(l - V(x_l_)) ~ rf‘:fg wt" ~
with ,L.'é- =
V(%) = [d*le =V (1). j“ i

Apparently f(z,z%) is given by CC (e, -
o
> — ZO 2 X2 <

Flz,at) = exp (-2 xiﬁ(x@) .

One can show (see R. Baier et al in Nucl. Phys. B 484 265 (1997)) that

for small z2

v(z%) 4n’aN. 5
= pzG(z, Q7).
A N2 -1 N1

X&
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Defining
N(a) = | ezt

we get

N(z2) = [d*bdz p(b®, z) No(z?) f(z,xi)b:m.

Using f(z,z2) from above we get the answer:
. N2_1
N(z?) = [d*b ==

m2aN,z3

R?2—b% , _
1 —exp (ﬂ ) miv(mi))

or, equivalently,

. N2 -1

N(z%) = [d*b ==

(:EJ_) / TFZCINCCC%_

27%v/ R? — b2z aN,
NZ_1

X

1 —exp (-—— pxG(z, 1/351)]

Amazingly enough, this result is EQUIVALENT to
the result of McLerran and collaborators for

(A5 (2, ) A (g, y- )"

= NO SHADOWING, only FINAL STATE INTER-
ACTIONS -

16




Looks like the expression McLerran and collaborators have found is more
likely to describe the gluon production, than the nuclear gluon distribution
function.

4

The current carries momentum ¢, and Q? = —¢q - ¢. Let Al} is a typical
transverse momentum a high energy gluons obtains by multiple rescatter-
ings with the nucleons.

= What is usually understood as a gluon distribution of a nucleus =G 4(z, @?)
is measured at the scale Q2. G 4(z, Q?) = AzG(z, @?) holds for any Q? (in
our approximation, without gluon loops).

= When Q? < A% , which can be achieved by going to a large nucleus
or small @2, the produced gluon has transverse momentum very much dif-
ferent from Q?, and , therefore, we can not associate the gluon production
with the gluon distribution.

= The distribution of the produced gluons does not reflect shadowing,
but rather the probability conserving final state interactions, which modify
the transverse momentum distribution of the produced gluon.

= When Q% > Al? the gluon production can be associated with the gluon
distribution. P ]
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Gluon production in nucleon—nucleus collisions.

The nucleon—nucleus collision looks a little different from the current-
nucleus collision. The incoming nucleon now may interact with the nucleus
before and after it emits a gluon. One can show that for a particular graph
all the interactions are either before or after the gluon’s emission.

The prelevant profadya.‘éors are.

e
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This is due to the fact that the gluon—nucleon system passes the nucleus
instantaneously compared to the magnitude of the gluon emission time.
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F o o d---J‘

Using the light—cone perturbation theory we can calculate the cross-—
section. There are three cases:

n 'ln\"cxl-c.a.l

TTWJJT{“ [

do(@) 1 OéCF MR )

_l o il (z1—22)
d?ldy / o a:z m)? ziz3
do(b+¢) L / dzb d2g; d2;17 1 Cl{CF$1 ) ezl (x:—gz)
Pldy “(2m? 7zl

2R — B 230V R? — b?
X lexp | — +exp | —
2\ 2

do 8 l]d%d% s BN Cr i eﬂ'(m_m)—
Pldy T n? m 2iad

exp

(_ (21 - Zo)*0

2 _ 12
o
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Performing the integration:

]. aCF 2
dzldy /d b K
d?ldy T 2
dO'(d) 1 GCF 9 e- l'i 9 2 1.2
i [ % 7 {21n(<ll>L) L0~

with

(B (b)) = —M(U-}(l’) VR,

and L some infrared cutoff.

Generalizing to a nucleon, in the LLA we obtain:

do 1 0
Zldy = - [d2b Jalga:G(:v I?) 4+ 2G(z < >)
Note that |
do
@—/ dQldyd2l—2/dea:G z,(13)).
1ot Cevim
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3. Light Cone Gauge A, =0

A . e 171a a
a. Nucleus—current scattering with j = —3Fj FJ,.
We consider the current—nucleus interaction:

i 7
SR Ay

Let’s assume that the current has ¢ = 0 and Q? = —2q.q_ > I>. There-

fore I, € —q4 < p4.
We want to show that there is no final state interactions in the light cone

gauge. Consider the graphs:

\ \

At X\
/"3 i LX
+ + * £ *
\.
a¥
\.
+ +

For simplicity we’ll take the polarization of the outgoing gluon to satisfy

€E_ —
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Now that we have proved that in the large Q? limit in the light cone gauge
there is no final state interaction and no multiple current—gluons vertices,
the current—nucleus interaction looks like:

IR g

One can show that the number density of the produced gluons is :

dN
noar = —2T (AL — ) A (-1 1y + a0))

Taking the leading Q? term yields:

N(23) = —% [ d*Tr (A (b)A; (b+z)) .
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Rewriting the non-Abelian Weizsicker—Williams field result from Phys.
Rev. D 54, 5463 (1996) as

Al(z,z_) = [d®bdb_S(z,b_)T*S ™ (z,b-)

z—0>

X
Tz -8

“(b,b-)6(b- — =),

with
S(z,z_) = PelisT" Inllz—blp* k- )60 —a-)dbdb-}

and

(7°(0, )3 (8, ) = B2

Q2 rG(z, Q")

0Q?
x8(b—b)8(b_ — b )6%

where the expectation is taken in the nuclear wave function, we can calculate

the gluon field correlation function and the number density of the produced

gluons:
- N2
N 2 d2
(1) = m2a N, :cL/
2m2a N2 v R?2 — b2
X |1 —exp|— Ta ]\fj_ 1 pxG(z,1/z%)
C

This exactly corresponds to the covariant gauge result!!!
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The details of calculations:
plugging in the non-Abelian Weizsacker—Williams field

5 2
N(z?) = == [ d® [ d?v'db’_d*b"db"
(-TJ_) 7r/ / _ _

(b, B)A"(B",bY)

><< b-b  b+z-¥
=02 [b+z-b"|?

x Te[S(b, b_) TS~ (b, b)S(b + &, b")T*S (b + z,b")]) .

Using the density correlation function:

N(22) = 42" In(|z|p) Q*5rs

e Gla, Q)

aQT‘”

X / d*bdb’_ (Tx[S(b,b_)T*S ™" (b, b_)S(b + 2, b.)T*S ™ (b + z, b )]) .
By the definition of S(b,b_)

S(b,b-) =TI [L +igT"p"(y, y-) In(|b — ylu)d*y Dyi-

—(1/2)g°T*T" 6" (y, y-)A" (¥, v_) In(|b — ylp) In(|b — ¥ |w)d*y Ay;-d*y' Ay .

Going term by term we get:

(Tr[S(b,b_)T*S™ (b, b_)S(b + z,b ) T*S™ (b + 2, b )]) =

= QﬂprelNc-Ti 2

x (Te[S(b,b. — Dy )T*S7 (b, b — Ay_)S(b+z, b — Ay )T*S™H b+ z,b_ — Ay-)]),
This yields for the trace:
(Te[S(b,b_)T*S™'(b,b_)S (b + z,b)T*S ™' (b + z,b_)]) =

TE ‘NC -f !
exp -7 ST Sl oG(e 1)+ 5.)).

Integrating over b we easily obtain the answer.
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We observe that the final state interactions,
which are present in covariant gauge, are ab-
sent in the light cone gauge.

There they become encoded in the wave func-
tion of the nucleus.

Glauber expansion in light cone gauge be-
comes a property of the wave function.
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b. Nucleon—nucleus scattering in light cone gauge.

choose A,.=0 gauye with  &.=0 (for simplicity)

start anith +wo nucleons:
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Therefore, all the non-zero contributions of the graphs at this order are:

g i i P

The same is true for all orders. One can picture the final answer as:

e —
P

o o T

We denote the non-Abelian Weizsacker—Williams field of the nucleus by
L
A (zzo).
The “classical” field of the nucleon is
A (2, 24, b) = =, S(2)T*S™ (2)0(z+) In(|z — blw)A,
with

. 5
<prN> N2

Q2 zG(z, Q%).

6Q2
Define free quantized gluon field Aﬁ"ee(:c) , normalized according to
{’\)(Z) ilx
(27)3 2wy,

G.

(0|Af™(z)|1Aa) =
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To write a compact formula for the cross—section define a total gluon field

Al (z):
AZ"t(:}:) = Af;(a:) - AL(a:,b) - Aime(a:).

Then the gluon production cross—section is

do 0, 1 2 NZ-1
Fid = w; [ d®b <)§1 3} (0]S|IAa)(1AalS|0)),
with
1 _
S = -§/d4a; TrF,, (z)FL(z)
and

Fpu = 8uAiOt = 8VALOt - ig[Affta Ai'Ot’]
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Conclusions:

* We found an answer for the quasi—classical
gluon production in current—nucleus and pA
scattering in covariant gauge.

x In light cone gauge multiple rescatterings
in the final state turn into the property of the
wave function. Glauber expansion is encoded
in light cone wave function.

x Found a partonic interpretation of the pro-
cess in light cone gauge.
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