Open Charm Physics at SPS and RHIC

Ziwei Lin Texas A&M University

Production in pp

Leading-Order Processes

Higher-Order Results

Fragmentation Functions

Total Cross Section vs Data

Production in AA

Scaling

Observables at RHIC

High- p_{\perp} Suppression from Energy loss

Mid- p_{\perp} Enhancement from Radial Flow at SPS

? from Radial Flow at RHIC

Open Charm in pA at RHIC Summary

Why do we need open charm?

J/ψ suppression suppression of total charm or only J/ψ

Thermal dileptons

needs good understanding of continuum dilepton spectra

Thermalization sensitive to energy loss and thermalization effects

RWW'99, 1/9/99

Charm Fragmentation in Hadroproductions e^+e^- data suggests the Peterson form ^a:

$$D(z) \propto rac{1}{z[1-1/z-\epsilon/(1-z)]^2}$$

E769, consistent with EITHER: bare charm quark spectra OR :Peterson plus intrinsic $< k_{\perp}^2 >$ of 2 GeV²

E706, higher p_{\perp} coverage, consistent with Peterson plus intrinsic $\langle k_{\perp}^2 \rangle$ of $1 - 2 \text{ GeV}^2$

RWW'99, 1/9/99

Figure 3: $\Delta \phi$ and $p_T^2(D\overline{D})$ distributions. The lines show for comparison the results of the NLO QCD calculation for $\langle k_T^2 \rangle = 1 \text{ Ge } V^2/c^2$ (solid) and $\langle k_T^2 \rangle = 2 \text{ Ge } V^2/c^2$ (dashed).

High- p_{\perp} direct photon and π data suggests: $< k_{\perp}^2 > \simeq 1 \text{ GeV}^2 + \mathbb{C} Q^2$

 \Rightarrow Open charm hadroproduction most consistent with Peterson fragmentation+parton intrinsic k_{\perp}

^aWA92, PLB385,487(96)

Large uncertainty from scale and quark mass. However, data helps to constrain parameters, NLO & resummation help, making ratios helps(systematic studies)

Open Charm Production in AAScaling from pp to AA

(shadowing on nuclear structure function will be discussed later)

STAR? PHENIX?

PHENIX, good

PHENIX,good

Mass spectrum of electron pair in central arms. The contribution of vector mesons, J/Psi, combinatorial background, correlated charm pair, and Drell Yan are shown. The statistic of the figure is roughly corresponds to 1 year of RHIC running

from Akiba

Heavy quark may have energy loss

Shuryak, PRC55,961(97); Lin, Vogt & Wang, PRC57,899(98)

- Suppressions of high- p_{\perp} D mesons, as well as high- p_{\perp} leptons and high-M dileptons from charm decays.
- No evidence of jet quenching for pions At SPS ^a
 → large formation time for fast pions?
- heavy quarks might be the best probe of energy loss

Figure: assumed dE/dx=-1GeV/fm, Lin, Vogt & Wang, PRC57 a Wang, PRL81,2655(98)

PHENIX will then see a large suppression:

 $E_{e} > 1 \,\, {
m GeV}, \; \eta_{e} \, \in \, (-0.35, 0.35); \; E_{\mu} \, > 2 \,\, {
m GeV}, \; |\eta_{\mu}| \, \in \, (1.15, 2.44)$

Lin, Vogt & Wang, PRC57,899(98)

RWW'99, 1/9/99

Enhancement from Charm Radial Flow

Hadron m_T inverse slope $T_{eff} \propto$ mass:

 $\operatorname{mid}_{p_{\perp}}$ D-mesons would be harder: $\operatorname{mid}_{p_{\perp}}$ D-mesons enhanced. However, no change in the total number

Lin & Wang, PLB in press. Detailed study can be done in a cascade model.

Will this enhancement happen at RHIC?

\sqrt{s}	Initial T_{eff}^D	Final T_{eff}^D
$({ m GeV})$	(MeV, PYTHIA)	(MeV)
17 (SPS)	160	290?
200 (RHIC)	430	
5500 (LHC)	500	

In addition to energy loss at RHIC, radial flow may soften D-meson spectrum & lead to a SUPPRESSION of dileptons from charm, instead of the enhancement at SPS. Other Suggestions on IMR Dilepton Enhancement

- A) πa_1 annihilation ^{*a*}:
 - enhancement comes mainly from the πa_1 coupling to $\rho(1700)$;
 - however, this coupling is uncertain
- B) Secondary Drell-Yan processes ^b:
 - mainly from interactions between produced mesons and baryons
 - sensitive to hadron formation time τ_F
 - effect varies from 30% to 3 for Pb + Pb
- How to test these scenarios at RHIC?
 - A) scales with (pion number)² \Rightarrow bigger enhancement at higher energies
 - B) scales with (pion number) however, finite τ_F would probably kill the main contribution due to the huge γ factor
 - Suppression expected from the open charm scenario

 $[^]a$ Li & Gale: Nucl.Phys.A638,491c(98)

^bSpieles et al, Eur.Phys.J.C5,349(98)

Open Charm in pA at **RHIC:**

a unique place to measure gluon shadowing

 $\frac{d\sigma_{pA}^{c\bar{c}}}{d^3p} \propto \int dx f(x) \int dx_A \frac{d\hat{\sigma}}{d\hat{t}} f(x_A) \ S(x_A, Q^2)$

Nuclear shadowing of quark densities observed. Gluon shadowing too(indirectly): Large effects on global observables at RHIC: (Even Larger effects on gluon-dominated processes)

Figure 2: The ratio $r(x) = G^{8n}(x)/C^{C}(x)$ of tim to carbon gluon density as a function of x together with the ratio of structure function, $f_{1}(x) = F_{2}^{8n}(x)/F_{2}^{C}(x)$. The statistical error on f_{1} is less than 1% in the whole range of x. The box represents the extraction of r from J/ψ electroproduction data [2] (see text).

Gousset & Pirner, PLB375, 349(96).

Wang & Gyulassy, PRD44, 3501(91)

Mapping Gluon Shadowing in pA at RHIC:

Relate dileptons rapidity with Bjorken x_A : $\ln x_A \approx -y_{l+l-} + \ln(\alpha M + \beta)$

Lin & Gyulassy, PRL77,1222(96)

 $\alpha \& \beta$ determined from charm fragmentation and decay kinematics

Summary

- Open charm production in pp
 - reasonably described by NLO pQCD
 - best fit with Peterson's fragmentation plus hadron intrinsic k_{\perp}
- Open charm production in AA at RHIC
 - large yield of open charm
 & dileptons from their decays
 - a difeptons nom then decays
 - great coverage of open charm observables
 - high p_{\perp} might be the best probe of energy loss
 - radial flow may change spectra at medium p_{\perp}
 - dilepton spectra from open charm decays in pA can map the gluon shadowing in nuclei
 - must be studied well before other issues can be addressed well, such as thermal dileptons and J/ψ suppression
- In 1/2 year RHIC will start to answer!