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units

The hit rate on the PXL detector

from Eq.A-3 and Eq. A1-7dN
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 hit rate per area on the PXL layer

L Luminosity

σ pp cross section

This depends on the interaction diamond

Assume the interaction diamond is Gaussian with σd 30cm

Weight the z term accordingly and let r 2.5cm
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 solving numerically 
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 Hit rate integrated over the diamond source
distribution



L σ 400kHz to 700kHz for proton run beginning of fill, from Ernst
Sichtermann
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 Hit rate averaged over diamond

τi 186μs PXL integration time
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 Expected hit density at the center of the PXL inner layer at full pp
luminosity with a interaction diamond of sigma = 30 cm

source at z = 0

At the outer layer radius the expected hit density
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 Expected hit density at the center of the PXL outer layer at full pp
luminosity with a interaction diamond of sigma = 30 cm

Scales slower than 1/r^2, but faster than 1/r.
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A1
Derivation of
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 Eq. A1-1 the rate of positive ion generation per volume

using a cylindrical coordinate geometry (Fig.
A1-1).

dN

dη
number of tracks per unit pseudo rapidity, assumed constant

dNi

ds
number of ion-electron pairs created per unit length along the track 

L Luminosity

σ cross section

qe electron charge



Fig. A1-1 Elemental volume with track along s leaving ionization segment s

from the geometry illustrated in Fig. A1-1
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 δs qe Eq. A1-2

where

is for a collision, the average number of
tracks per area  impinging on the inside
surface of the elemental volume in Fig. A1-1 
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 Eq. A1-4 is the length of the track segment

passing through the elemental volume

ΔV ΔA Δr Eq. A1-5 is the elemental volume

combining Eq.  A1-2 through Eq. A1-5 gives
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 qe Eq. A1-6

the charge volume density left by a single collision

To find 
dη

dz
use the definition of pseudo rapidity 
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and taking the derivative
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 Eq. A1-7

combine Eq. A1-7 and A1-6 to eliminate
dη

dz

and multiply by the event rate L σ

gives the following expression for the generation rate of positive ions
per volume
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 Eq. A1-8 which is uniform in z, i.e. it does not matter

where in z the collision occurred.

A similar and perhaps more straight forward derivation has been done starting with spherical
coordinates which gives the same expression.  This will be added later.
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