

Large-x Parton Distributions

Z.-E. Meziani Temple University

 \odot Inclusive lN

●Inclusive *l* N double spin asymmetries

Semi-Inclusive l N double spin asymmetries in meson production

• Single spin asymmetries in *pp W* production

Summary

PDFs in the valence quark region

- large x exposes valence quarks
 free of sea effects
- x->1 behavior sensitive test of spin-flavor symmetry breaking
- > important for higher moments of $(\widehat{O}_{x}) = \widehat{O}_{x}$ PDFs - compare with lattice QCD
- intimately related with resonances, quark-hadron duality

Helicity Dependent PDFs from Semi-Inclusive (HERMES)

BNL, July 19, 2006

12 GeV upgrade kinematical reach

Access to very large x (x > 0.4) \bigcirc 20 г Clean region ✓ No strange sea effects 15 ✓ No explicit hard gluons to be included $Q^2 ({
m GeV}^2)$ Quark models can be a powerful tool to investigate the structure of the nucleon 5 Comparison with lattice QCD is \bigcirc possible for higher moments of structure functions. c1 M_{\bullet} $n = 2, 4, \dots$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2) \qquad n$$
$$M_n(Q^2) = \int_0^1 dx \ x^{n-1} \ g_1(x, Q^2) \qquad n$$

$$n = 1, 3, 5, ...$$

•••

BNL, July 19, 2006

Examples of existing data and physics issues

World data on g_1^p

BNL, July 19, 2006

Future Prospects in QCD at High Energy

ΪĽ

Unpolarized Neutron to Proton ratio at large *x*

$$\frac{F_2^n(x)}{F_2^p(x)} \xrightarrow[x \to 1]{} \frac{u_v + 4d_v}{4u_v + d_v}$$

SU(6)

$$\frac{F_2^n}{F_2^P} = \frac{2/3 + 4 \times 1/3}{4 \times 2/3 + 1/3} = \frac{2}{3}$$

O Clearly SU(6) symmetry is broken

 Writing a wavefunction that would favor the dominance of the up quark goes towards reproducing the experimental data

 $\frac{F_2^n(x)}{F_2^p(x)} \xrightarrow{x \to 1} \frac{1}{4}$

BNL, July 19, 2006

Unpolarized Neutron to Proton ratio (continued)

•Impact:

•In the large x region (x>0.5) the ratio F_2^{n}/F_2^{p} is not well determined due to the lack of free neutron targets

determine valence d quark momentum distribution

- extract helicity dependent quark distributions through inclusive DIS
- high x and Q² background in high energy particle searches.
- construct moments of structure functions

Unpolarized Neutron to Proton ratio

Spectator tagging

 Nearly free neutron target by tagging low-momentum proton from deuteron at backward angles

- Small p (70-100 MeV/c)
 - Minimize on-shell extrapolation (neutron only 7 MeV off-shell)
- Backward angles ($\theta_{pq} > 110^{\circ}$)
 - Minimize final state interactions

DIS from A=3 nuclei

- Mirror symmetry of A=3 nuclei
 - $\begin{array}{l} \succ \text{ Extract F}_2^{\text{ n}}/\text{F}_2^{\text{ p}} \text{ from ratio of }^3\text{He}/^3\text{H} \\ \text{ structure functions} \\ \frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} F_2^{^3He}}{2F_2^{^3He}}/F_2^{^3H} \mathcal{R} \end{array}$
 - Super ratio \mathcal{R} = ratio of "EMC ratios" for ³He and ³H

calculated to within 1%

Most systematic and theoretical uncertainties cancel

Inclusive Scattering off a "free" Neutron - the BoNuS* Experiment

- D(e,e'p_{back}) at Jefferson Lab with CLAS and RTPC^{**}
- 1, 2, 4 and 5 GeV electrons impinging on a 6 mm Ø, 20 cm long D₂ gas target (7.5 atm) => L = 0.2·10³⁴/cm²s
- Ran 3 months (October -December 2005)
- Jefferson Lab, Old Dominion Univ., Hampton Univ., William & Mary, James Madison Univ., Univ. of Houston and the CLAS collaboration

Radial TPC (view from downstream)

*BoNuS = Barely off-shell Nucleon Scattering

Future Prospects in QCD at Fight Energy Projection Chamber

Expected BoNuS Data

BNL, July 19, 2006

Unpolarized Neutron to Proton Ratio

HallB 11 GeV with CLAS12

Hall C 11 GeV with HMS

The Future - Jlab at 12 GeV

Neutron Form Factors

BNL, July 19, 2006

World data for A₁

Proton

SU(6) Breaking mechanism

- Relativistic Constituent Quark Model (CQM)
 Close, Thomas, Isgur
 - > Introduce hyperfine $\vec{S}_i \cdot \vec{S}_j \delta^3(\vec{r}_{ij})$ interaction (N Δ mass splitting, etc...)

> Constrain d/u using \mathbb{R}^{np} data : d(x)/u(x) = (4 \mathbb{R}^{np} -1)/(4- \mathbb{R}^{np})

Perturbative gluon exchange

Farrar & Jackson, P.R.L. <u>35</u> (1975) 1416; Brodsky et al., Nuc. Phys. <u>B441</u> (1995) 197.

Can exchange transverse gluon-flipping both spins

Only longitudinal gluonscannot flip spins As x-->1

BNL, July 19, 2006

A_1^n in DIS from ³He in Hall A

Helicity-Flavor Decomposition

Flavor Decomposition: PDFs

BNL, July 19, 2006

Inclusive measurements of asymmetries

Semi-inclusive DIS

- > unpolarized or polarized beam and target
- mass of unobserved X system, W_X > 2 GeV

$ep \rightarrow e'\pi X$: kinematic coverage at 11 GeV

>Acceptance in Q², M_x , P_T gained with high luminosity and energy upgrade (at 6 GeV M_x < 2.5GeV, Q² < 4.5 GeV², P_T < 1GeV)

test factorization in a wide kinematical range
 study the transition between the non-perturbative and perturbative regimes of QCD
 measure PDFs and study higher twists

Semi-inclusive DIS (Factorization!)

Factorization of current and target fragmentation

Flavor decomposition (2)

BNL, July 19, 2006

Flavor decomposition (2)

$E_e = 11 \text{ GeV } \text{NH}_3 \text{ and } ^3\text{He}$

 Asymmetry measurements with different hadrons (π+,π–) and targets (p,n) allow flavor separation

$\vec{p} p$ At RHIC with *W* production in

$$A_{L}^{W^{+}} = \frac{\Delta u(x_{1})d(x_{2}) - \Delta \bar{d}(x_{1})u(x_{2})}{u(x_{1})d(x_{2}) + \bar{d}(x_{1})u(x_{2})}$$

$$A_{L}^{W^{+}} = \frac{\Delta u(x_{1})}{u(x_{1})}$$

$$A_{L}^{W^{+}} = \frac{\Delta u(x_{1})}{u(x_{1})}$$

$$A_{L}^{W^{+}} = \frac{\Delta u(x_{1})}{u(x_{1})}$$

$$Q^{2} = M_{W}^{W}$$

0.6

Flavor decomposition: polarized sea

- Predictions:
 - > Instantons (χ QSM):
 - $\Delta \bar{u} \approx -\Delta \bar{d}$
- •First data from HERMES

$$\Delta \overline{u} - \Delta \overline{d} \approx 0$$

Summary

- Inclusive measurement will allow to extract the helicity dependent and independent up and down parton distributions at large *x* but with the following caveats:
 - Log resummations,
 - Higher twists effects
 - Nuclear effects
- Semi-inclusive asymmetry measurements with different hadrons (π.,K) and targets (p,n) will provide these distributions for all flavors.
 - The x range is determined by kinematics
 - > The large x reach is not as high as in inclusive.
 - Systematics different and thus a powerful cross check for the up and down distributions from inclusive.
- *W* production at RHIC in *pp* will provide an independent measurement.
 - > Different systematics compared to semi-inclusive
 - > x range consistent with semi-inclusive

