Future Prospects in QCD at High Energy July 17-22 at BNL

Recent results from lattice QCD on nucleon structure

Shoichi Sasaki (RBRC / Univ. of Tokyo)

Outline

- Introduction:
- Review of lattice results for proton spin
 - quark spin fraction $\Delta\Sigma$ (Δu , Δd , Δs)
 - quark orbital angular momentum L_q
- Results from RBC (RIKEN-BNL-Columbia) collab.
 - Old quench DWF results on iso-vector observables
 - New projects (hyeron beta decay)
 - Preliminary 2+1 flavors DWF results
- Summary

Proton spin

Proton spin crisis?

Proton spin puzzle....

Lattice QCD

decomposition in a gauge invariant way X. Ji, PRL 78 (97) 610

Methodology

• quark spin fraction $\Delta\Sigma$

 $\langle p, s | \bar{q} \gamma_5 \gamma_\mu q | p, s \rangle = s_\mu \Delta q$

• quark total angular momentum $T^{q}_{\mu\nu} = \frac{1}{2} \bar{q} \gamma_{(\mu} [\vec{D} - \overleftarrow{D}]_{\nu)} q$

$$\langle p', s' | T^q_{\mu\nu} | p, s \rangle = \bar{u}(p', s') \Gamma^q_{\mu\nu} u(p, s)$$

Generalized form factors

$$\Gamma^{q}_{\mu\nu} = A_{q}(Q^{2})\gamma_{(\mu}\bar{P}_{\nu)} + B_{q}(Q^{2})\frac{iP_{(\mu}\sigma_{\nu)\alpha}Q^{\alpha}}{2M} + \dots$$

 $J_q = rac{1}{2} [A_q(0) + B_q(0)] = rac{1}{2} [\langle x
angle_q + B_q(0)]$ Ji's sum rule

Calculation of Matrix Elements (I)

• Matrix element can be extracted from the following ratio

$$\frac{\langle \psi_N(t)O(t')\overline{\psi}_N(t'')\rangle}{\langle \psi_N(t)\overline{\psi}_N(t'')\rangle} \to \langle N|O|N\rangle$$

Calculation of Matrix Elements (II) $\langle \psi_N(t)O(t')\overline{\psi}_N(t'') \rangle$

may possess two types of the Wick contraction

connected contribution

disconnected contribution (L³ × T) times expensive calculation T typical orders of L, T are O(10)

Quench approximation

$$\begin{split} \langle O(U,\psi)\rangle &= \frac{1}{Z} \int D\bar{\psi}D\psi DU \ O(U,\psi) e^{-S_G(U) - \bar{\psi}M(U)\psi} \\ &= \frac{1}{Z} \int DU \ O(U,M^{-1}(U)) (\det\{M(U)\})^{N_f} e^{-S_G(U)} \\ &= \frac{1}{Z} \int DU \ O(U,M^{-1}(U)) e^{-S_G(U) + N_f \operatorname{TrLm}M(U)} \end{split}$$

 $\det\{M(U)\} = 1 \Longleftrightarrow N_f = 0$

quark spin fraction $\Delta\Sigma$

	Kentucky	KEK-Tsukuba	SESAM
N_{f}	0	0	2
La	1.5 fm	2.2 fm	1.5 fm
Statistics	24	260	200
M _π (GeV)	0.75 -1.36	0.51 - 0.96	0.64 - 1.02
Renormalization	one-loop PT	one-loop PT	one-loop PT
Δu	0.79(11)	0.638(54)	0.62(7)
Δd	-0.42(11)	-0.347(46)	-0.29(6)
Δs	-0.12(10)	-0.109(30)	-0.12(7)
ΔΣ	0.25(12)	0.18(10)	0.20(12)
g _A =Δu-Δd	1.20(10)	0.985(25)	0.907(20)

quark spin fraction $\Delta\Sigma$ (cont'd)

From old calculations (1995,1999)

 $\checkmark \Delta\Sigma(Lattice) \sim + 0.20$ (exp. ~ 0.20 ± 0.10)

 $\checkmark \Delta s(Lattice) \sim -0.10$ (exp. $\sim -0.12 \pm 0.05$)

Surprisingly agrees with experimental values, but

- ✓ All calculations are performed
 - at single lattice spacing with Wilson fermions
 - in the heavy quark region ($M_{\pi} > 0.5-0.6$ GeV)
 - on the small physical volume
- Furthermore, $g_A(Lattice) = \Delta u \Delta d \sim 1.0$ (exp. 1.2670)

quark angular momentum

	Kentucky	QCDSF	LHPC-SESAM
$\mathbf{N}_{\mathbf{f}}$	0	0	2
La	1.5 fm	1.5 fm	1.5 fm
Statistics	100	O(100)	200
M _π (GeV)	0.75 -1.36	0.64 - 1.07	0.90
Renormalization	one-loop PT	NPT	one-loop PT
at the scale	μ = 2 GeV	μ = 2 GeV	μ = 2 GeV
$J_u + J_d + J_s$	0.30(7)	I	1
$J_u + J_d$ (con)	0.44(7)	0.33(7)	0.34(4)
$L_u + L_d + L_s$	0.17(6)		-
$L_u + L_d$ (con)	0.13(7)	0.03(7)	0.01(4)

iso-scalar quark angular momentum (cont'd) Orbital angular momentum: $L_q = J_q - \frac{1}{2}\Delta\Sigma$ Kentucky group, PRD 62 (2000) 114504 $L_{u+d+s} = 0.17(6)$ Full calculation (quench), but poor statistics for $\Delta\Sigma$ QCDSF: PRL 92 (04) 042002 QCDSF and LHPC-SESAM LHPC-SESAM: PRL 93 (04) 112001

$$J_{u+d} \simeq \frac{1}{2} \langle x \rangle_{u+d} \approx \frac{1}{2} \Delta \Sigma(\operatorname{con}) \Longrightarrow L_{u+d} \approx 0$$

Not including disconnected contributions

Unresolved puzzles

Before drawing definite conclusion from lattice QCD We have to resolve serious discrepancies in g_A , $\langle x \rangle_{u-d}$

V=16³x32, β=6.0 (quenched), β=5.6 (full)

:150-Vector

LHPC-SESAM collaboration, Phys. Rev. D66 (02) 034506

Messages from this talk

- Don't take too much seriously lattice numbers of $\Delta\Sigma$ and L_q <u>at this moment</u> for various reasons:
 - isovector quantities are not well reproduced
 - disconnected contributions are missing in some case

Activities related to Nucleon Structure in RIKEN-BNL-Columbia collaboration

Nucleon excited states

• S. Sasaki, T. Blum, S. Ohta, Phys. Rev. D65 (2002) 074503.

Nucleon axial charge

• S. Sasaki, K. Orginos, S. Ohta, T. Blum, Phys. Rev. D68 (2003) 054509.

Nucleon structure functions

- K. Orginos, T. Blum, S. Ohta, Phys. Rev. D73 (2006) 094503.
- Neutron electric dipole moment
 - F. Berruto, T. Blum, K. Orginos, A. Soni, Phys. Rev. D73 (2006) 054509.

Activities related to Nucleon Structure in RIKEN-BNL-Columbia collaboration

- Nucleon excited states
 Domain wall fermions
 - S. Sasaki, T. Blum, S. Ohta, Phys. Rev. D65 (2002) 074503.
- Nucleon axial charge g_A iso-vector
 - S. Sasaki, K. Orginos, S. Ohta, T. Blum, Phys. Rev. D68 (2003) 054509.
- Nucleon structure functions $\langle x \rangle_{u-d}$ iso-vector
 - K. Orginos, T. Blum, S. Ohta, Phys. Rev. D73 (2006) 094503.
- Neutron electric dipole moment
 - F. Berruto, T. Blum, K. Orginos, A. Soni, Phys. Rev. D73 (2006) 054509.

Domain Wall Fermions

- New discretization scheme to preserve chiral symmery on the lattice
 - 5-dim extenstion of the Wilson fermion (L_s: the 5-D extent)
 - $L_s \rightarrow \infty$: Exact chiral symmetry even at finite lattice spacing
 - Finite L_s : Residual chiral breaking ($m_{res} \sim 1$ MeV for $L_s \sim O(10)$)
 - Leading discretization errors are expected to be O(a) exp(-L_s)
 - Simpler renormalization thanks to exact chiral symmetry
 - \checkmark can eliminate mixing of lattice operators

Simulations (quench)

- Domain wall fermion + DBW2 gauge action
- Lattice cutoff: $1/a \sim 1.3 \text{ GeV} (\beta = 0.87, c_1 = -1.4069)$
- Small residual quark mass: 0.7 MeV (L₅=16, M₅=1.8)
- Lattice size: V=16³ x 32, La ~ 2.4 fm
- Lightest pion mass: 390 MeV
- # of statistics: 416
- Non-perturbative renormalization

Quenched DWF calculation of g_A

 $g_A (exp.) = 1.267 (3)$ $\mathbf{S} \quad 1.0 \quad g_A^{\text{ren}} = \frac{g_A^{\text{lat}}}{g_V^{\text{lat}}} = \frac{\langle N(t')A_3(t)\overline{N}(0)\rangle}{\langle N(t')V_4(t)\overline{N}(0)\rangle}$ 0.8 • L=2.4 fm (DWF/DBW2) 0.6 0.0 0.2 0.4 0.6 0.8 M_{PS}^{2} [GeV²]

Sasaki-Orginos-Ohta-Blum, PRD68 (03) 054509

- ✓ the lightest pion mass, M_π ~ 0.39 GeV
 ✓ relatively large volume, V ~ (2.4 fm)³
 ✓ large statistics, 416 configs
- * mild quark mass dependence
- Linear extrapolation yields
 - $g_A = 1.212 (27)$

Quenched DWF calculation of g_A

Sasaki-Orginos-Ohta-Blum, PRD68 (03) 054509

- ✓ the lightest pion mass, M_π ~ 0.39 GeV
 ✓ relatively large volume, V ~ (2.4 fm)³
 ✓ large statistics, 416 configs
- * mild quark mass dependence
- * clear finite volume dependence
 - a 20 % increase from 1.2 fm to 2.4 fm

resolve the long-standing problem!

Quenched DWF calculation of $\langle x \rangle_{u-d}$

K. Orginos, T. Blum, S. Ohta, hep-lat/050524.

very mild dependence of quark mass

- sophisticated gauge/fermion action
 No O(a) error
- large physical volume

✓ La ~ 2.4 fm

- lighter quark mass region
 - \checkmark M_{π} ~ 390 MeV
- non-perturbative renormalization
- high statistics

But, the puzzle still remains.

Quenched DWF calculation (cont'd)

very mild dependence of quark mass

- Ratio $\langle x \rangle_{u-d} / \langle x \rangle_{\Delta u \Delta d}$ \checkmark Renormalization invariant quantity \clubsuit Chiral symmetry is responsible for $Z_{\langle x \rangle_q}(\mu) = Z_{\langle x \rangle \Delta q}(\mu)$
- DWF calculation has an advantage in this point

K. Orginos, T. Blum, S. Ohta, hep-lat/050524.

• Iso-vector tensor charge

$$g_{\scriptscriptstyle T} = \delta u - \delta d = 1.193(30)$$

at μ = 2 GeV in the MS scheme

Hyperon beta decay (New Project) S. Sasaki and T. Yamazaki **I** the baryonic-version of semileptonic decay Alternative way to determine |V_{US}| other than K₁₃ decays **I** the SU(3)-extension of neutron beta decay Vital input to analysis of strange guark spin fraction $\Delta\Sigma (= \Delta u + \Delta d + \Delta s)_{\text{Expt.}} = 0.213 \pm 0.138$ $(g_A/g_V)_{np} = \Delta u - \Delta d$ $(g_A/g_V)_{\Lambda p} = (2\Delta u - \Delta d - \Delta s)/3$ Assumption : SU(3) symmetry $(g_A/g_V)_{\Xi\Sigma} = (\Delta u + \Delta d - 2\Delta s)/3$ $(g_A/g_V)_{\Sigma n} = \Delta d - \Delta s$

Hyperon beta decay (New Project)

W the baryonic-version of semileptonic decay

Alternative way to determine |V_{US}| other than K₁₃ decays

I the SU(3)-extension of neutron beta decay

Vital input to analysis of strange quark spin fraction

 $\Delta s = -0.124 \pm 0.046$

Hyperon beta decay (New Project)

W the baryonic-version of semileptonic decay

Alternative way to determine $|V_{us}|$ other than K_{l3} decays

I the SU(3)-extension of neutron beta decay

Vital input to analysis of strange quark spin fraction

$\Delta s = -0.124 \pm 0.046$

The hidden uncertainty of Δs coming from unknown SU(3) breaking in hyperon beta decays.

Hyperon Beta Decay $(\Xi^{\circ} \rightarrow \Sigma^{+})$

* Ξ^{0} →Σ⁺ is the direct analogue of n→p under d ↔ s ✓ highly sensitive to SU(3) breaking

* So far, a single experiment and no lattice result

- DWF-DBW2 (Quench) at beta=0.87 (a⁻¹=1.3GeV)
 - 16³x32x16 (L=2.4 fm): 377 statistics (QCDOC)
 - m_l=0.04, 0.05, 0.06 (M_π=0.53, 0.60, 0.65 GeV)
 - fixed "strange" quark masses at m_s=0.08 (0.10)

SU(3) breaking effect on g_A/g_V

- This doesn't conflict with Cabibbo-model fits for HBD
- However, this doesn't mean that an estimation of Δs is reliable.

 $\frac{\langle \Sigma(t')A_3(t)\overline{\Xi}(0)\rangle}{\langle \Sigma(t')V_4(t)\overline{\Xi}(0)\rangle} \frac{\langle N(t')V_4(t)\overline{N}(0)\rangle}{\langle N(t')A_3(t)\overline{N}(0)\rangle} = \frac{g_1(q_{\max}^2)}{f_1(q_{\max}^2) - \delta f_3(q_{\max}^2)} \left(\frac{f_1(0)}{g_1(0)}\right)_{\mathrm{SU}(3)}$ $= \frac{g_1(0)/f_1(0)}{(g_1(0)/f_1(0))} + \mathcal{O}(\delta^2)$

 $q_{\rm max}^2 = -(M_{\Xi} - M_{\Sigma})^2$

Tiny symmetry breaking (~2%)!

2+1 flavors DWF QCD on QCDOC

RIKEN BNL Research Center Dedicates New Supercomputer (QCDOC) for Physics Research

- DWF + Iwasaki gauge action
- Lattice cutoff: 1/a ~ 1.6 GeV (β=2.13, c₁= -0.331)
- Lattice size: V=24³ x 64 x 16 La ~ 3.0 fm
- $m_{light} = 1/4, 1/2, 3/4 \text{ of } m_{strange}$ $M_{\pi} \sim 350, 500, 750 \text{ MeV}$

in collaboration with Columbia, UKQCD

Summary

- The computation of nucleon properties in lattice QCD is now progressing with steadily increasing accuracy by using Dowain Wall Fermions
- Spin physics program in RBC collaboration will run on QCDOC to achieve high precision calculations using 2+1 flavors DWF QCD (underway)