Hard exclusive processes at JLab

Harut Avakian Jefferson Lab

Workshop on Future Prospects in QCD at High Energy, July 20, 2006

Introduction

•Exclusive processes

- •Photons (DVCS)
- •Pseudoscalar mesons
- Vector mesons
- Lambda production
- •JLab at 12 GeV
- •Summary

* In collaboration with V.Burkert and L.Elouadrhiri

Physics Motivation

Describe the complex nucleon structure in terms of quark and gluon degrees of freedom.

DVCS – for different polarizations of beam and target provide access to different combinations of GPDs H, H, E

DVMP for different mesons is sensitive to flavor contributions (ρ^{0}/ρ^{+} select H, E, for u/d flavors, π , η , K select H, E)

Study the asymptotic regime and guide theory in describing HT.

Deeply Virtual Compton Scattering

Asymmetry in DVCS Experiments

Requirements for precision (<15%) measurements of GPDs from DVCS SSA:

Define the procedure to extract GPDs from A_{LU}
effect of finite bins (prefactor variations) ~10%
other moments

•Define background corrections

pion contamination ~10%

•radiative background, ADVCS

A complete MC simulation of the whole chain:

- 1. Generator (signal+background)
- 2. Detector response (GEANT)
- 3. Extraction of GPDs from measured exclusive events (cleaned from background)

CEBAF Large Acceptance Spectrometer

Kinematic coverage of 5.75 GeV(red) and 5.48(blue) CLAS data sets

DVCS data sets

- 1. $ep\gamma$ 1 photon in Calorimeter ~**150000 events** + ~500000 from dedicated run.
- 2. epX 0 photons in CLAS (~**2M events**) tight cuts on PID, missing mass M_X , no other tracks

- High luminosity, polarized CW beam.
- Wide physics acceptance, including exclusive, semi-inclusive processes, current and target fragmentation.
- Wide geometric acceptance, allowing detection of multi-particle final states.

π^0 contamination of DVCS sample

Use realistic event generators for single γ and π^0 that reproduce the measured yields.

- Cut on the direction of the measured photon significantly reduces the π^0 contamination.
- Contamination strongly dependent on kinematics, and π^0 contribution must be subtracted bin by bin.

π^0 MC vs Data 600 500 400 300 200 100 600 500 400 300 200 100 1.0<Q²<2.0,)<t<0.15 0.1<x<0.3 15<t<0.3 6<t<0.75 1.2 1.4 0.5 P_E \mathbf{P}_{θ} 0.25 0.2 0.4 0.6 0.8 t Ø

 $N_{\gamma}^{Data}(\pi^{0}) = N_{\pi^{0}}^{Data} \frac{N_{\gamma}^{MC}(\pi^{0})}{N_{-0}^{MC}},$

- Exclusive π^0 production simulated using a realistic MC (PDF based)
- Kinematics distributions in x,Q^2 and t tuned to describe the CLAS data (b=1)
- •Define contribution to the single photon sample from π^{0}

π^0 - Beam cross section asymmetry

Main unknown in corrections of DVCS SSA is the π^0 beam SSA.

γ MC vs Data

Region where BH totally dominates (small t, small photon θ_{LAB}) •Negligible DVCS x-section, small π^0 contamination •Rapidly changing prefactors, mainly small / ϕ , hard to detect photons

Large angles

•Uniform coverage in angle ϕ , photon measurement less challenging •DVCS x-section non negligible introduce some model dependence) $\Box \pi^0$ dominates the single photon sample (in particular at low Q² and large t)

• MC Kinematic distributions in x,Q²,t consistent with the CLAS data

GPD extraction from Beam SSA:MC

$$A_{\mathsf{LU}}(\phi) \approx c_{\mathsf{LU}} \sin \phi \left\{ \mathcal{H} + \xi (1 + \frac{F_2}{F_1}) \widetilde{\mathcal{H}} + \frac{t}{4M^2} \frac{F_2}{F_1} \mathcal{E} \right\}, \ c_{\mathsf{LU}} \approx \frac{8xK(x, t, Q^2)(2 - y)(1 + \epsilon^2)^2 F_1}{c_0^{\mathsf{BH}}},$$

Divide the A_{LU} by the kinematic factor c_{LU} extracted from event by event sum

Extraction procedure tested with GEANT based MC with realistic xsections for DVCS and pions recover input GPDs

GPD extraction from Beam SSA:Data

•A_{LU} corrected for π^0 (bin by bin)

•H \rightarrow ratio of the A_{LU} and prefactor c_{LU} calculated for all events in a bin (averaged over ϕ)

GPD sums (H) extracted for two non-overlapping data sets $epX(ep0\gamma)$ and $ep\gamma$ consistent

Target Spin Asymmetry (LTSA): t- Dependence from CLAS

Measurements with polarized target will constrain the polarized GPDs and combined with beam SSA measurements would allow precision measurement of unpolarized GPDs.

$$e^- p \rightarrow e^- p (\pi^0 / \eta)$$

Exclusive $\pi^+\pi^-$ and $\pi^+\pi^0$

Exclusive 2 pion production: M_X (epX)

Significant background from exclusive 2 pion production

Exclusive ρ meson production: $\gamma^* p \rightarrow p \rho^0$

Decent description in pQCD framework already at moderate Q²

Exclusive ρ^0 production on transverse target

Asymmetry is a more appropriate observable for GPD studies at JLab energies as possible corrections to the cross section are expected to cancel

Accessing polarized and strange GPDs with unpolarized target ! (no gluons)

(ud)-diquark is a spin and isospin singlet s-quark carries whole spin of Λ $|\Lambda\rangle = |uds\rangle$

Study ratio observables: K/K*,polarization transfer

X_F

CLAS12

5m

CLAS 12 - Expected Performance

	Forward Detector	Central Detector
Angular coverage:		
Tracks (inbending)	8° - 40°	40° - 135°
Tracks (outbending	5° - 40°	40° - 135°
Photons	2° - 40°	40° - 135°
Track resolution:		
δp (GeV/c)	$0.003p + 0.001p^2$	$\delta \mathbf{p}_{\mathrm{T}} = 0.03 \mathbf{p}_{\mathrm{T}}$
$\delta\theta$ (mr)	<1 (>2.5 GeV/c)	8 (1 GeV/c)
δφ (mr)	< 3 (> 2.5 GeV/c)	2 (1 GeV/c)
Photon detection:		
Energy range	>150 MeV	> 60 MeV
δΕ/Ε	0.09(EC)/0.04(IEC)	0.06 (1 GeV)
δθ (mr)	4 (1 GeV)	15 (1 GeV)
Neutron detection:		
η_{eff}	0.5 (EC), 0.1 (TOF)	0.04 (TOF)
Particle id:		
e/p	>>1000 (< 5 GeV/c)	-
-	>100 (> 5 GeV/c)	-
p/K	< 3 GeV/c (TOF)	0.65 GeV/c
-	3 - 10 GeV/c (CC)	
p/p	< 5 GeV/c (TOF)	1.2 GeV/c
	3 - 10 GeV/c (CC)	
K/p	< 3.5 GeV/c (TOF)	0.9 GeV/c

CLAS12 - DVCS/BH Target Asymmetry

e p[†]-→epγ

JU=0.12

∽JU=0.50

Ø

Transversely polarized target

Sample kinematics

JLab12: Hall A unpolarized target

Summary

- DVCS beam spin asymmetries was extracted from two different CLAS data sets and for two different samples and was used to study GPDs.
- DVCS target spin asymmetry was extracted and compared with GPD based predictions (in publication).
- Studies of the exclusive π^0 background performed. Beam and target SSA extracted.
- Significant polarization transfer measured in exclusive production of Lambda hyperons
- High luminosity, polarized CW beam, wide kinematic and geometric acceptance allow studies of exclusive meson production in hard scattering kinematics, providing data needed to study GPDs.

Summary-12

Upgraded JLab: Combination of full acceptance, general purpose (CLAS12) and high luminosity (Hall-A/C) detectors will provide high precision measurements of 3D PDFs in the valence region.