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Single Spin Asymmetry — definition

O Spin-avg X-section: oll) = 5lo¢,s)+ o(l,—5)

jG’(E} gj o J(ga —5')

b= BI| =

d Spin-dep X-section: Ao (/,5) =
1 Single spin asymmetry:

_Ao(¢,5) o5 —o(f,—3)
Al,5) = o)  o(l,5)+o(,-5)

¢ single longitudinal spin asymmetry: A;

particle spin §'is parallel to its momentum p
** single transverse spin asymmetry: Ay

particle spin § is perpendicular to its momentum p

July 21, 2006 3 Jianwei Qiu, ISU



Single spin asymmetry corresponds
to a T-odd triple product

o [
Ay xi8,- (Fx £ T/p/ /p//

— the phase “2" is required by time-reversal invariance

— covariant form: A o< 1€#¥ P pﬂsuﬁap;'g

Nonvanishing A y requires a phase, a spin flip, and
enough vectors to fix a scattering plan
— Inclusive DIS does not have enough vectors
Note: g and p can only fix a line i{
p
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A, = 0 for inclusive DIS

J DIS cross section: J(EJ_) oc LMY Wﬁu(gJ_)
3 Leptionic tensor is symmetric: LFY =LYV

Q Hadronic tensor:  W,,,,(5 ) o (P, §'l|jl(0) Ju(y) |P,51)

1 Polarized cross section:
Ao (31) o< LM Wy (51) — W (—51)]

J P and T invariance:

Ay =0 <= (P,5.]7(0)4.(y) |P,5L)
= (P,—51|75(0) j.(y) | P, —51)
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Large A, observed in hadronic collisions

] process: only one hadron is transversely polarized:

0.6 —————————————————
Q Large asymmetries Ay | \s=23.5 GeV
. | Pt=0.5~2 GeV/c %
observed in hadron : ;
ol 02 r i d
collisions: : i , @
< decay of A Ay 0 s 4 f
s production of ©’s I *
02 - 3
: g
o4l " Kf I }
/ b . - | | | _
FNAL - E704 0 02 04 06 08 I
Xp
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Single transverse spin asymmetry — A,
in the parton model

% transverse spin information at leading twist — transversity:

5(] (X) — d) - @ = Chiral-odd helicity-flip density

% the operator for 6q has even y’s ==> quark mass term
% the phase requires an imaginary part => loop diagram

Asymmetry is expected to be small

/7

% Puzzle: the size of the observed single-spin asymmetries
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Single transverse spin asymmetry — A,
in collinear factorization approach

*» Leading twist PDF with transverse hadron spin:

oq(x,S,)

[

I's =1, vy =) Twist-3 matrix elements

] need an even number y’s:

o' (iys) ®=m)  An extra transverse index
extra gluon (its polarization)
extra vector direction
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High twist contribution to A,

P /'\ b 1/'\}— z {\I— 2
St Sr I St
o(sy) ~ ¢ + +

(a) (b) (c)
*+* Leading spin dependent part of the cross section
==) |[nterference between amplitudes (a) and (b) or (c)
<+ The hadronic phase —the "i"
==) Re[(a)] interferes with Im[(b)] or Im[(c)]

* Re[(a)] x Im[(b)] o« m, oq(s,)
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Leading contribution to A

Kl Ko

< Unpinched pole to give the phase: d(z1 — x2)

“ Spin flip from interference between a quark state and
a quark-gluon composite state

% Observed hadron momentum provides the 3 vector
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AN oc | §¢(|_sz)

10

Jianwei Qiu, ISU



A, from polarized twist-3 correlations

s+ Factorization:

7

F (Xl’XZ) oC W7+F+LW>
D (X1’X2) x <‘/77+Dﬂ//>

H\lormal twist-2 distributions
s+ Twist-3 correlation functions:

a T¢ (Xl, X2) and T, (Xl, Xz) have different properties .
under the P and T transformation

d T, (Xl, X, ) does not contribute to the A,
gy (Xl, X, ) is universal, x,=x, for A, due to the pole
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Single spin asymmetry within the
collinear factorization

+» Generic twist-3 factorized contributions

AcaB—hn(8T) = ZT(/L(M 2, ST YR fo/p(x)

abe

Provides hadron spin dependence | ® 6,4 —.(57) ® De—sn(2)

+ L 5q(3) (z, §7)/ < | transversity

abe

® {fo/B(ED® 64y, .(57) ® D(_}h(i—’l:zz)

a

+fb (z 1=$2) ® Gabc(8T) ® Doy (2

(1) Calculated by Qiu and Sterman, Phys. Rev. D, 1999
(2) Calculated by Kanazawa and Koike, Phys. Lett. B, 2000
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What is the T®)(x)?

3 Twist-3 correlation T'r (x, x):

du. . +..-

4

X (P, 87 |9 (0)y ™" [/ dy, € T7"" F " (yy ) | ¥a(yy )P, 1)

d Twist-2 quark distribution:

dy, 17 + — i — —
q(x) =/ j:‘ S (P, Slea(D)7+wa(y1 )| P, 87)

I'r Represents a fundamental quantum correlation
between quark and gluon inside a hadron
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Leading twist-3 contribution to A

“* Minimal approach (within the collinear factorization):

< Leading (0/0x)Tr(x, x) contribution to the asymmetries

B dAo
d3 ¢

x efTsTnn D.,-(2)® [—:1: SETF(:E, :1:)]
T

p -

® — |Gz ® AGgg—e + E g (z') ® AG ot e

il

ol A o L) 2 q(x) o (1 x)"
) A (_Gj i T (00 00 = (-9
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Single transverse spin asymmetry — A,
In k; — factorization approach

k*+k:
2xp-n

L

k" = xp

+ =n" +k/

If |k2|<<|Q2|~(xp)?, the parton state
of momentum, k, lives much longer
than the time scale of hard collision

k™+ic )\ k™ —ic A

— j—dk H(O, k* —O)Id!ﬁ( ,,1 _ ]( ,,1_ ]T(kql)

Transverse momentum dependent (TMD) PDFs

@ (xk ,s))
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A, — generated from initial state

% Sivers’ function: ¢ (x,k,)
yH vkﬁs
M

Sivers’s function is a unknown nonperturbative function

0,00k, 5 ) =0, (6K, =5) = g, (. k) £, -

“ Spin-dependence of the cross section:

A(T(k -’SJ_)DC[@q(xnk n‘gj_)_@g(xnk :_EJ_)]®D(Z)
Pn'k?s?) g (x,k ) ®D(2)

( & 1upo

Single transverse-spin asymmetry is generated or
parameterized by the Sivers’ function
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A, - generated from final state

% Collins’ function: D, (z,k))

B B kp.r—v
D(z,k,,5,)+ D(x,k,,~5,) = Dy(z,k,) &, f;
Collins’ function represents a fragmentation to a hadron
from a sum of polarized partons

“+* Spin-dependence of the cross section:
Ao(k, ,s )coq(x,s )Q[D(z,k, s )+D(z,k, ,—s,)]
< (0, ki) 0g(x.5,)®Dy(z,k,)

LV

Single transverse-spin asymmetry is generated or
parameterized by the Collins’ function
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Numerical results — “Predictions”

o 0
= ® 7 mesons
o O Total energy
t'ﬁ 0.4- ]
5 —_— Ct_ollms ® )
f-:; Sivers )
D - == Initial state twist-3 | B /
= - = Final state twist-3 /
£ o.
2
<
=
g

pr)= 101113 15 18 21 24 GeVic

0.2, 02

04 06 08
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d Comparison with
STAR data

J Too small P; value
to be comfortable
for twist-3 calculation

4 Is the k;-factorization
valid for this case

d Which mechanism is
correct, any overlap?
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Collinear twist-3 vs. k; - approach

d Twist-3 contribution in collinear factorization
— leading corrections from parton correlation (a minimal approach)
0
—x —T ®(x
e (x)

= o~ baPsSTPr T

S T ¢(x)
91
e. X@xT (X)j

d(if?;-T Zc&bc a/A($1)®¢b/B($2)®Habc®D (Z)—|—

4 Effect of non-vanish parton k; (when k; ~ p):

A\l océgpAszTpT ﬁ fJ_(X) :

M = Non-perturbative scale, e.g.,
di-quark mass, ...

" o v
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Existing QCD based mechanisms

4 In collinear factorization, SSAs are generated by
“* multi-parton correlation functions — initial-state
“* multi-parton fragmentation functions — final-state

4 In k; factorization, SSAs are generated by
¢ Sivers function - initial state
** Collins function — final state

1 Any connections between these mechanisms?

Yes. They are expected to describe the
same physics in any region where they
are both applicable
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A, in Drell-Yan lepton-pair production

dAc (s, )
dQdyd q,

with Acr = — [0' ]

. - - - - 4 - 2 2
% Collinear factorization is valid if (O, g, > AQC‘D

» The k; - factorization is valid if Q2 > Qi

===)p Both factorizations should work if

0" > g7 > Ay

m===p | Calculation Ay in both factorization schemes,
And expect same results in the overlap region
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A, in collinear factorization — ()

(a) (b) (c)
<+ A\ — interference of Re[(a)] and Im[(b)]:
< Imaginary part of amplitude (b): .(x,,x,,s,)
k, integration is fixed by an unpinched pole: soft, hard

“ Extract twist-3 quark-gluon correlation:

convert gluon field to corresponding field strength
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A, in collinear factorization — (ll)

d*Ao(S )
dQ*dyd*q |

a, [dx dx'

2m | x X
X Ze~[(H‘ HMg(x') + (HS + H)g(x')]

= 00€*PS10q1p

><6(§+f+ﬁ—Q3)

“ H$,and H], are soft and hard pole contributions

4 ox —1 —1

] DS N?
HLE.E == |:.I- ,{_ TF (.I-', I):| qfr + TF (I, I) qfr

g 1 A A M
1
S — — Y+ 20%5(0% —
Ny = H[Q ?) + 20%(0? - 2i)
— (4% + )17),
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Limit of Q >> Q; >> Agp

++ Mandelstam variables:

2 7
q1 q] h= — q1

I-éNl-& "7 T1-4 — ¢
&1 =z/x & =n/x oz =0Q/se = Q/[se™?

& =

+* On-shell delta-function:

SE+i+a—0)=08G60—-&N0—-&)—q7)
SE LRI
)

(=& (I = &)y

+8(&, — 1)8(&, — UmQ.j]
q1
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Asymptotic Results

% quark-antiquark annihilation:

A A=Y 8(S ) wBo  4lp s dx dx’
5 > — g€ 3_]_“ 3 —
dQ-dvyd-q, (g7)* 27 ) x x
X qg(x"{6(& — 1)A + 6(& — 1)B}
| d
where 4 — m{[l;r}:(l 1)}(1 + &)+ Tple,x — &)
I+ & (1 —&1)°Q2&+1)—2
- + Tr(x, x) - ]
(I — &)y P 2 (1 =&y
1 + &,

+ CrTr(x,x — X,) —,
e (1 — &)y

| + &2
B = CpTp(x, I)[ [ F' +206(& — Ul“%}
( &)y q1
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A, In k; — factorization — (l)

A Factorized formulain v-4 =0 gauge:
d*Aa(S)
dQ*dyd*q,

= fT{]EHﬁSmQLﬁML fdzgudzgudzji
P
Eu g1
@
X gr(zy, ki1, £1)q(z0, kot $H)H(Q?)

X 8Py, +kyy + AL —G,)

]

X (S(Al))_l 2 — -(21! . p)_fl/v
O Need to calculate at g, > A

% Sivers’s function ¢_.(x.k,)
<+ unpolarized k;-dependent (anti)quark PDFs ¢g(x,k,)
o Soft factor S(k))
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A, In k; — factorization — (ll)

“ Expand transverse momenta in sz)(l}'ll + EEJ_ + AL —q1)
to the first power

+ Use the one-loop moment relations:

f PR G kL) = q(z) f PE| Gz, k1) = Glz)

1 R "
M_ fdzklfaan(x, f’(l) — TF(.I,I) fdz)lJ_S()lJ_) — 1
P

Spin-dependent cross section calculated in
k.-factorization approach is the same as the
asymptotic limit of what calculated in collinear

factorization

Is this matching obvious? No!
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Spin-averaged Leading Twist

T~
P,

s

T
o

July 21, 2006

\‘\h
%

g, —0

g, —0

~— |

>N\/<
—
LO

TMD

X

H_)
LO

also need a soft part

28
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Spin-dependent — “Soft Pole”

J‘dkg — fixed by a unpinched pole — &, =0

[ =
q, > 0

Trouble!

s
/T =
S

<«— Canceled by c.c.
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Spin-dependent - “Hard Pole”

jdkg — fixed by a unpinched pole — k&, #0

LA X

July 21, 2006

= (g+g—>oq+g2)®(qg+7—> %)

TMD
—-
g, — 0 -
LO

30
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Semi-inclusive DIS (SIDIS)

J Process:
e’ Breit frame:

q K
= p, ’VVV\:-{kiQﬁP

Two scale problem: Q2=-qg2, p;

% Fixed order pQCD: Q ~ pP; > A¢p

< Single spin asym: A o« S (Pxp)=0
If P is anti-parallel to p,,
< When Q> P, p; sensitive to parton k;
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A, for Semi-inclusive DIS (SIDIS)

 SIDIS cross section: N4 p
/ h
P,s

lo(S 27
) M (4, W (P S g, P
dxgdydzpd? Py, | Q)

2= P-P,/P-q y= P-q/P-(

L‘“‘y(f Q') — 9 (f“‘ﬁ"” —|—f‘“‘€w— I—!-UQQ/Q)

i dd&' ’é &
WH (P, S\, q, Py) = 4%2/ E(PS|TL(€)|X P) (X Py T, (0)|PS)

] Polarized SIDIS cross section:
Ac(S,) =[o(SL)—0a(—-51)]/2

Enough vectors to form the invariant
SIDIS
Explicit model calculation —) AN 0 Brodsky et al
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Hadronic tensor and structure functions

4 Virtual photon momentum:

- Py, P
;+£hP”+Pq—BP# with ¢ P, =¢q¢'P,, =0

¢ =q; +

4 Independent structure functions:
5

W= VW Wi = WogV2?

1=1
With five parity and current conserving tensors  V!"”

- . . ~ya 3
and five corresponding inverse tensors V,f*'

 Conserving tensors:

VH-U — XHXY L YHYV All other tensors give the
! | Sub-leading term when
V{W _ 5 (ZTMTU 1+ XHXY 4 YMYU) qr << Q
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J Orthonormal basis vectors:

1 j 2
T = 5 (¢" + 2xgP") XM = qi [P—h — g — (1 — %) :ITBP“]
. 1

I
YH = €7 7,X T, Zn = _% i’ =—q¢?
With normalization: 7w, —1 x*X, = Y*Y, = 27, = —1

1 Leading result when q; << Q:

s

q(2)

= € =
dx pdydz,d2 P, | Q* H(P2))2 277
< {3(€ = 1)A+ (6 - 1)B} .

Where A and B are the same as those for Drell-Yan

dAc(S)) Amad, Sep a8 go 2Pl a, /d:z:dz

rz

But, the asymmetry has an opposite sign due to the expected
sign difference between the Sivers functions
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Summary and outlook

“ Two mechanisms for generating single

transverse-spin asymmetry are closely connected

** They describe the same physics in the region where
they are both valid
— an important constraint to phenomenological
fits to data
** What should we use for hadronic processes where
QCD factorization may not be valid

+* “First” test of QCD beyond the leading twist level

.
""" " EN
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Backup transparencies
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When does the factorization lose its
predictive power?

At the time when the nonperturbative functions
lose their universality

“* For final-state fragmentation:

Factorization breaks if the fragmentation
took place inside the hadronic medium

@) | If the lifetime of the parton state of momentun k
is shorter than the medium size
1 20 |

Lifetime: AyJ_ ~ At ~ IN= ~ m2 = Lmedium ~ 2r0 ~ 2 fm

jet

m?
== |/, >5GeV| —=
GeV
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Open questions — (l)

“* How much overlap between k;-approach at low p;
and twist expansion at high p;?

k;: approach Twist-3
Sivers: fﬁ (X) T (X, %)
Collins: H, (2) DA (z,2)

*» What these nonperturbative functions try to tell us?

“direct k;” vs “k; — moments”
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Seperate Sivers’ and Collins’ functions

Transversely polarized target

¥ \
Sivers Collins
(sin(o — o)) moment (sin(o 4 04)) moment
! !
fip() hi(z), Hyi(2)

Ps: Angle between Sland L.P.

¢ : Angle between L.P. and H.P.
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Measure Sivers’ and Collins’ functions

< SIDIS: G?IJT — et X
study azimuthal distribution of 7’s:

with transversely polarized target:
(unpolarized beam)

+» Collins functions:

L4 eqCI(X)D(Z)

$ = ¢ + g Collins angle
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Initial success of RHIC pp runs

o 1
d 1t cross section measured "}, 10" a)
over 8 order of magnitude g )
> 10° PHENIX Data
[PRL 91, 241803 (2003)] § o — KKP FF
o sE = Kretzer FF
iy 10
0 Good agreement with NLO 10°
pQCD calculation at low p; 10
10° &
S | L
U Can be used in interpretation 0 o o } } J
© -20
of spin-dependent results Y= .
a tE c)
e 2
g0 d)
g L0 _
= s
- . 0 & ® S
9.6% normalization error not shown ; . - i
pr (GeV/c)
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Numerical results — (l)

(compare apples with oranges)

0.4 T T | T T T T T T T T | T T T T

0.2

—0-2 | Vs = 20 GeV, pp N
lp = 4 GeV 1
A = 80 MeV |
—0.4 _. A I BN R S ._
0 0.2 0.4 0.6 0.8

Xp

=
=T,

0.4

0.2

0.0

—0.2 —

—-0.4

Vs = 20 GeV, PP

- 1 = 4 GeV \
L \
| A = BO MeV % |
1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0 0.2 0.4 0.6 0.8
Xp

Qiu and Sterman
Phy. Rev. D, 1999

Fermilab data with £7 up to 1.5 GeV
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Numerical results — (ll)

(compare apples with oranges)

0‘3_"I""I""I""I""_
02 — |
{EZ 0.1 _— __
0.0 — |
i ) Qiu and Sterman
_Ol_..I....l....|..,,|,,,,_ Phy. Rev. D, 1999
' 0 0.2 0.4 0.6 0.8
XF
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Model for T.(x,x)

“ Tr(x,x) tells us something about quark’s transverse
motion in a transversely polarized hadron

*» It is non-perturbative, has unknown x-dependence

Tr(z,x) o< (P,&r|a(0)y" [/ dy, €°T7"" F;(yg)] Ya (Y, )P, 8T)

< Model for I'p (3:, x) of quark flavor a:

TFa(ma$) Eﬁa)\qfa,(m) ANOC(KJ;j n
with k,, = +1and kg = —1 for proton == —u/) 1-x
T, (%,X) = G(X) o (LX)’

Fitting parameter A\ ~ O(Aqcp)

One parameter and one sign!
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Intrinsic vs dynamical k;

In g-P frame, if K ~pr <Q
< we can neglect k?*
in partonic part
*+ But, we cannot neglect
k; In partonic Ezart
‘ k - XP -|‘kl +mn

d One can define k;-dependent and gauge invariant

parton distributions
1 Soft interaction between the hadrons can spoil

factorization

d Sudakov resummation (done in b- or k;-space) resums

dynamical k; from gluon shower
4 Parton orbital motion is more relevant to the intrinsic k;
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K; - Factorization

4 k;-factorization measures parton k; directly, while
twist-expansion gives integrated k; information

d No formal proof of k;-factorization for hadronic
collisions at k; ~ p+

T

B, - ,
—
&

Q~ pr>>ky

N
\

1 Factorization requires a separation of perturbative
hard scale from nonperturbative hadronic scale
—> a physical hard scale, Q, much larger than the k;

4 k,-factorization works for semi-inclusive DIS and
Drell-Yan, or others with a large scale Q
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