Future Prospects in QCD at High Energy Joint EIC2006 and Hot QCD Meeting July 21, 2006
Brookhaven National Lab, Upton, NY

Mechanisms for Single-Spin Asymmetries in SIDIS

Jianwei Qiu Iowa State University

Based on works done with Sterman, and Ji, Vogelsang, and Yuan

Outline

\square Single spin asymmetry - definition
\square Single spin asymmetry within the collinear
factorization - high twist matrix elements
$\square K_{T^{-}}$factorization - Sivers and Collins effects
\square Connection between high twist matrix elements and Sivers and Collins functions
\square Single spin asymmetry in SIDIS
\square Summary and outlook

Single Spin Asymmetry - definition

\square Spin-avg X-section:

$$
\sigma(\ell)=\frac{1}{2}[\sigma(\ell, \vec{s})+\sigma(\ell,-\vec{s})]
$$

\square Spin-dep X-section: $\quad \Delta \sigma(\ell, \vec{s})=\frac{1}{2}[\sigma(\ell, \vec{s})-\sigma(\ell,-\vec{s})]$
\square Single spin asymmetry:

$$
A(\ell, \vec{s}) \equiv \frac{\Delta \sigma(\ell, \vec{s})}{\sigma(\ell)}=\frac{\sigma(\ell, \vec{s})-\sigma(\ell,-\vec{s})}{\sigma(\ell, \vec{s})+\sigma(\ell,-\vec{s})}
$$

* single longitudinal spin asymmetry: A_{L} particle spin \vec{s} is parallel to its momentum \vec{p}
* single transverse spin asymmetry: A_{N} particle spin \vec{s} is perpendicular to its momentum \vec{p}

Single spin asymmetry corresponds to a T-odd triple product

$A_{N} \propto i \vec{s}_{p} \cdot(\vec{p} \times \vec{\ell})$

- the phase " i " is required by time-reversal invariance
- covariant form: $A_{N} \propto i \epsilon^{\mu \nu \alpha \beta} p_{\mu} s_{\nu} \ell_{\alpha} p_{\beta}^{\prime}$

Nonvanishing A_{N} requires a phase, a spin flip, and enough vectors to fix a scattering plan

- Inclusive DIS does not have enough vectors Note: q and p can only fix a line

$\mathrm{A}_{\mathrm{N}}=\mathbf{0}$ for inclusive DIS

\square DIS cross section: $\sigma\left(\vec{s}_{\perp}\right) \propto L^{\mu \nu} W_{\mu \nu}\left(\vec{s}_{\perp}\right)$
\square Leptionic tensor is symmetric: $\quad L^{\mu \nu}=L^{v \mu}$
\square Hadronic tensor: $\quad W_{\mu \nu}\left(\vec{s}_{\perp}\right) \propto\left\langle P, \vec{s}_{\perp}\right| j_{\mu}^{\dagger}(0) j_{\nu}(y)\left|P, \vec{s}_{\perp}\right\rangle$
\square Polarized cross section:

$$
\Delta \sigma\left(\vec{s}_{\perp}\right) \propto L^{\mu \nu}\left[W_{\mu \nu}\left(\vec{s}_{\perp}\right)-W_{\mu \nu}\left(-\vec{s}_{\perp}\right)\right]
$$

$\square P$ and T invariance:

$$
\begin{aligned}
A_{N}=0 \Leftrightarrow & \left\langle P, \vec{s}_{\perp}\right| j_{\mu}^{\dagger}(0) j_{\nu}(y)\left|P, \vec{s}_{\perp}\right\rangle \\
& =\left\langle P,-\vec{s}_{\perp}\right| j_{\nu}^{\dagger}(0) j_{\mu}(y)\left|P,-\vec{s}_{\perp}\right\rangle
\end{aligned}
$$

Large A_{N} observed in hadronic collisions

\square process: only one hadron is transversely polarized:
\square Large asymmetries A_{N} observed in hadron collisions:
decay of Λ

* production of π 's

Single transverse spin asymmetry - A_{N} in the parton model

* transverse spin information at leading twist - transversity:

$$
\delta q(x)=\frac{1}{i}-\left(\begin{array}{l}
4 \\
i
\end{array}=\right.\text { Chiral-odd helicity-flip density }
$$

* the operator for $\bar{\delta} q$ has even γ 's \quad quark mass term
* the phase requires an imaginary part \quad loop diagram

Asymmetry is expected to be small

* Puzzle: the size of the observed single-spin asymmetries

Single transverse spin asymmetry - A_{N} in collinear factorization approach

* Leading twist PDF with transverse hadron spin:

\square need an even number γ 's:

$$
\begin{aligned}
& \text { Twist-3 matrix elements } \\
& \begin{array}{l}
\text { An extra transverse index } \\
\text { extra gluon (its polarization) } \\
\text { extra vector direction }
\end{array}
\end{aligned}
$$

High twist contribution to A_{N}

* Leading spin dependent part of the cross section
\longrightarrow Interference between amplitudes (a) and (b) or (c)
* The hadronic phase - the " i "
$\Longrightarrow \operatorname{Re}[(a)]$ interferes with $\operatorname{Im}[(b)]$ or $\operatorname{Im}[(c)]$
$\nsim \operatorname{Re}[(a)] \times \operatorname{Im}[(b)] \propto m_{Q} \delta q\left(s_{\perp}\right)$

Leading contribution to A_{N}

* Unpinched pole to give the phase: $i \delta\left(x_{1}-x_{2}\right)$
* Spin flip from interference between a quark state and a quark-gluon composite state
* Observed hadron momentum provides the $3^{\text {rd }}$ vector

$$
A_{N} \propto i \vec{s}_{\perp} \cdot(\vec{p} \times \vec{\ell})
$$

A_{N} from polarized twist-3 correlations

* Factorization:

* Twist-3 correlation functions:
- $T_{F}\left(x_{1}, x_{2}\right)$ and $T_{D}\left(x_{1}, x_{2}\right)$ have different properties
- $T_{D}\left(x_{1}, x_{2}\right)$ does not contribute to the A_{N}
- $T_{F}\left(x_{1}, x_{2}\right)$ is universal, $\boldsymbol{x}_{1}=\boldsymbol{x}_{2}$ for A_{N} due to the pole

Single spin asymmetry within the collinear factorization

* Generic twist-3 factorized contributions

$$
\begin{aligned}
& \Delta \sigma_{A B \rightarrow h}\left(\vec{s}_{T}\right)=\sum_{a b c} T_{a / A}^{(3)}\left(x_{1}, x_{2}, \vec{s}_{T}\right) \otimes f_{b / B}\left(x^{\prime}\right) \\
&+\sum_{a b c} \delta q_{a / A}^{(2)}\left(x, \vec{s}_{T}\right) \\
& \text { Provides hadron spin dependence } \otimes \hat{\sigma}_{a b \rightarrow c}\left(\vec{s}_{T}\right) \otimes D_{c \rightarrow h}(z) \\
& \otimes\left\{f_{b / B}\left(x^{\prime}\right) \otimes \hat{\sigma}_{a b \rightarrow c}^{\prime}\left(\vec{s}_{T}\right) \otimes D_{c \rightarrow h}^{(3)}\left(z_{1}, z_{2}\right)\right. \\
&\left.+f_{b / B}^{(3)}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \otimes \hat{\sigma}_{a b \rightarrow c}^{\prime \prime}\left(\vec{s}_{T}\right) \otimes D_{c \rightarrow h}(z)\right\}
\end{aligned}
$$

(1) Calculated by Qiu and Sterman, Phys. Rev. D, 1999
(2) Calculated by Kanazawa and Koike, Phys. Lett. B, 2000

What is the $T^{(3)}(x)$?

\square Twist-3 correlation $T_{F}(x, x)$:

$$
\begin{aligned}
& T_{F}(x, x)=\int \frac{d y_{1}^{-}}{4 \pi} \mathrm{e}^{i x P^{+} y_{1}^{-}} \\
& \quad \times\left\langle P, \vec{s}_{T}\right| \bar{\psi}_{a}(0) \gamma^{+}\left[\int d y_{2}^{-} \epsilon^{s} T^{\sigma n \bar{n}} F_{\sigma}^{+}\left(y_{2}^{-}\right)\right] \psi_{a}\left(y_{1}^{-}\right)\left|P, \vec{s}_{T}\right\rangle
\end{aligned}
$$

Twist-2 quark distribution:

$$
q(x)=\int \frac{d y_{1}^{-}}{4 \pi} \mathrm{e}^{i x P^{+} y_{1}^{-}}\left\langle P, \vec{s}_{T}\right| \bar{\psi}_{a}(0) \gamma^{+} \psi_{a}\left(y_{1}^{-}\right)\left|P, \vec{s}_{T}\right\rangle
$$

T_{F} Represents a fundamental quantum correlation between quark and gluon inside a hadron

Leading twist-3 contribution to A_{N}

* Minimal approach (within the collinear factorization):

* Leading $(\partial / \partial x) T_{F}(x, x)$ contribution to the asymmetries

$$
\begin{aligned}
& E \frac{d \Delta \sigma}{d^{3} \ell} \propto \epsilon^{\ell} T^{s} T^{n \bar{n}} D_{c \rightarrow \pi}(z) \otimes\left[-x \frac{\partial}{\partial x} T_{F}(x, x)\right] \\
& \otimes \frac{1}{-\hat{u}}\left[G\left(x^{\prime}\right) \otimes \Delta \hat{\sigma}_{q g \rightarrow c}+\sum_{q^{\prime}} q^{\prime}\left(x^{\prime}\right) \otimes \Delta \hat{\sigma}_{q q^{\prime} \rightarrow c}\right] \\
& A_{N} \propto\left(\frac{\ell_{\perp}}{-\hat{u}}\right) \frac{n}{1-x} \text { if } T_{F}(x, x) \propto q(x) \propto(1-x)^{n}
\end{aligned}
$$

Single transverse spin asymmetry - \mathbf{A}_{N} In k_{T} - factorization approach

$$
k^{\mu}=x p^{\mu}+\frac{k^{2}+k_{\perp}^{2}}{2 x p \cdot n} n^{\mu}+k_{\perp}^{\mu}
$$

If $\left|k^{2}\right| \ll\left|Q^{2}\right| \sim(x p)^{2}$, the parton state of momentum, k, lives much longer than the time scale of hard collision

$$
\begin{gathered}
\Longrightarrow \int \frac{d x}{x} d^{2} k_{\perp} \mathrm{H}\left(Q, k^{2}=0\right) \sqrt{\int d k^{2}\left(\frac{1}{k^{2}+i \varepsilon}\right)\left(\frac{1}{k^{2}-i \varepsilon}\right) \mathrm{T}\left(k, \frac{1}{r_{0}}\right)} \\
\text { Transverse momentum dependent (TMD) PDFs } \\
\varphi_{q}\left(x, k_{\perp}, \vec{s}_{\perp}\right)
\end{gathered}
$$

$\mathbf{A}_{\mathbf{N}}$ - generated from initial state

Sivers' function: $\quad q_{T}\left(x, k_{\perp}\right)$

$$
\varphi_{q}\left(x, k_{\perp}, \vec{s}_{\perp}\right)-\varphi_{q}\left(x, k_{\perp},-\vec{s}_{\perp}\right)=q_{T}\left(x, k_{\perp}\right) \varepsilon_{\mu \nu \rho \sigma} \frac{\gamma^{\mu} n^{\nu} k_{\perp}^{\rho} s_{\perp}^{\sigma}}{M}
$$

Sivers's function is a unknown nonperturbative function

* Spin-dependence of the cross section:

$$
\begin{aligned}
\Delta \sigma\left(k_{\perp}, s_{\perp}\right) \propto & {\left[\varphi_{q}\left(x, k_{\perp}, \vec{s}_{\perp}\right)-\varphi_{q}\left(x, k_{\perp},-\vec{s}_{\perp}\right)\right] \otimes D(z) } \\
& \propto\left(\varepsilon_{\mu v \rho \sigma} P^{\mu} n^{\nu} k_{\perp}^{\rho} s_{\perp}^{\sigma}\right) q_{T}\left(x, k_{\perp}\right) \otimes D(z)
\end{aligned}
$$

Single transverse-spin asymmetry is generated or parameterized by the Sivers' function

A_{N} - generated from final state

* Collins' function: $\quad D_{T}\left(z, k_{\perp}\right)$

$$
D\left(z, k_{\perp}, \vec{s}_{\perp}\right)+D\left(x, k_{\perp},-\vec{s}_{\perp}\right)=D_{T}\left(z, k_{\perp}\right) \sigma_{\mu \nu} \frac{k_{\perp}^{\mu} \bar{n}^{v}}{M}
$$

Collins' function represents a fragmentation to a hadron from a sum of polarized partons

Spin-dependence of the cross section:

$$
\begin{aligned}
\Delta \sigma\left(k_{\perp}, s_{\perp}\right) \propto & \delta q\left(x, \vec{s}_{\perp}\right) \otimes\left[D\left(z, k_{\perp}, \vec{s}_{\perp}\right)+D\left(z, k_{\perp},-\vec{s}_{\perp}\right)\right] \\
& \propto\left(\sigma_{\mu v} k_{\perp}^{\mu} \bar{n}^{v}\right) \delta q\left(x, \vec{s}_{\perp}\right) \otimes D_{T}\left(z, k_{\perp}\right)
\end{aligned}
$$

Single transverse-spin asymmetry is generated or parameterized by the Collins' function

Numerical results - "Predictions"

Comparison with STAR data

Too small P_{T} value to be comfortable for twist-3 calculation
\square Is the k_{T}-factorization valid for this case
\square Which mechanism is correct, any overlap?

Collinear twist-3 vs. \mathbf{k}_{T} - approach

\square Twist-3 contribution in collinear factorization

- leading corrections from parton correlation (a minimal approach)

$$
\begin{aligned}
& + \text { c.c. } \\
& \longrightarrow A_{N} \propto \frac{1}{S} \varepsilon^{p_{A} p_{B} s_{T} p_{T}} \frac{1}{T} \frac{-x \frac{\partial}{\partial x} T^{(3)}(x)}{\phi(x)} \\
& \frac{d \Delta \sigma}{d y d p_{T}^{2}}=\sum_{a b c} T_{a / A}^{(3)}\left(x_{1}\right) \otimes \phi_{b / B}\left(x_{2}\right) \otimes H_{a b c} \otimes D_{c}(z)+\ldots
\end{aligned}
$$

\square Effect of non-vanish parton $k_{T}\left(\right.$ when $\left.k_{T} \sim p_{T}\right)$:

$$
A_{N} \propto \frac{1}{S} \varepsilon^{p_{A} p_{B} s_{T} p_{T}} \frac{1}{M} f^{\perp}(x) \ngtr \frac{p_{T}}{M}
$$

$M=$ Non-perturbative scale, e.g., di-quark mass, ...

Existing QCD based mechanisms

\square In collinear factorization, SSAs are generated by

* multi-parton correlation functions - initial-state
* multi-parton fragmentation functions - final-state
$\square \ln \mathbf{k}_{\mathrm{T}}$ factorization, SSAs are generated by
* Sivers function - initial state
* Collins function - final state
\square Any connections between these mechanisms?
Yes. They are expected to describe the same physics in any region where they are both applicable

A_{N} in Drell-Yan lepton-pair production

$$
\frac{d \Delta \sigma\left(s_{\perp}\right)}{d Q^{2} d y d^{2} q_{\perp}} \quad \text { with } \Delta \sigma\left(s_{\perp}\right)=\frac{1}{2}\left[\sigma\left(s_{\perp}\right)-\sigma\left(-s_{\perp}\right)\right]
$$

* Collinear factorization is valid if $Q^{2}, q_{\perp}^{2} \gg \Lambda_{\mathrm{QCD}}$
\star The $\mathbf{k}_{\mathbf{T}}$ - factorization is valid if $\quad Q^{2} \gg q_{\perp}^{2}$
\longrightarrow Both factorizations should work if

$$
Q^{2} \gg q_{\perp}^{2} \gg \Lambda_{\mathrm{QCD}}
$$

Calculation A_{N} in both factorization schemes, And expect same results in the overlap region

A_{N} in collinear factorization - (I)

(a)

(b)

(c)

* A_{N} - interference of $\operatorname{Re}[(\mathrm{a})]$ and $\operatorname{Im}[(\mathrm{b})]:$
* Imaginary part of amplitude (b): $\quad T_{F}\left(x_{1}, x_{2}, s_{\perp}\right)$
k_{g} integration is fixed by an unpinched pole: soft, hard
* Extract twist-3 quark-gluon correlation: convert gluon field to corresponding field strength

A_{N} in collinear factorization - (II)

$$
\begin{aligned}
\frac{d^{4} \Delta \sigma\left(S_{\perp}\right)}{d Q^{2} d y d^{2} q_{\perp}}= & \sigma_{0} \epsilon^{\alpha \beta} S_{\perp \alpha} q_{\perp \beta} \frac{\alpha_{s}}{2 \pi^{2}} \int \frac{d x}{x} \frac{d x^{\prime}}{x^{\prime}} \\
& \times \sum_{q} e_{q}^{2}\left[\left(H_{q}^{s}+H_{q}^{h}\right) \bar{q}\left(x^{\prime}\right)+\left(H_{g}^{s}+H_{g}^{h}\right) g\left(x^{\prime}\right)\right] \\
& \times \delta\left(\hat{s}+\hat{t}+\hat{u}-Q^{2}\right)
\end{aligned}
$$

* $H_{q, g}^{s}$ and $H_{q, g}^{h}$ are soft and hard pole contributions

$$
\begin{aligned}
H_{q}^{s}= & {\left[x \frac{\partial}{\partial x} T_{F}(x, x)\right] \frac{D_{q \bar{q}}^{s}}{-\hat{u}}+T_{F}(x, x) \frac{N_{q \bar{q}}^{s}}{-\hat{u}} } \\
D_{q \bar{q}}^{s}= & \frac{1}{2\left(N_{C}^{2}-1\right)} \hat{\sigma}_{q \bar{q}}(\hat{s}, \hat{t}, \hat{u}), \\
N_{q \bar{q}}^{s}= & \frac{1}{2 N_{C}} \frac{1}{\hat{t}^{2} \hat{u}}\left[Q^{2}\left(\hat{u}^{2}-\hat{t}^{2}\right)+2 Q^{2} \hat{s}\left(Q^{2}-2 \hat{t}\right)\right. \\
& \left.-\left(\hat{u}^{2}+\hat{t}^{2}\right) \hat{t}\right],
\end{aligned}
$$

Limit of $Q \gg Q_{T} \gg \Lambda_{Q C D}$

* Mandelstam variables:

$$
\begin{array}{lll}
\hat{s}=\frac{q_{\perp}^{2}}{\left(1-\xi_{1}\right)\left(1-\xi_{2}\right)} & \hat{t}=-\frac{q_{\perp}^{2}}{1-\xi_{2}} & \hat{u}=-\frac{q_{\perp}^{2}}{1-\xi_{1}} \\
\xi_{1}=z_{1} / x \quad \xi_{2}=z_{2} / x^{\prime} & z_{1}=Q / \sqrt{s} e^{y} & z_{2}=Q / \sqrt{s} e^{-y}
\end{array}
$$

* On-shell delta-function:

$$
\begin{aligned}
\delta\left(\hat{s}+\hat{t}+\hat{u}-Q^{2}\right)= & \delta\left(\hat{s}\left(1-\xi_{1}\right)\left(1-\xi_{2}\right)-q_{\perp}^{2}\right) \\
= & \frac{1}{\hat{s}}\left[\frac{\delta\left(\xi_{2}-1\right)}{\left(1-\xi_{1}\right)_{+}}+\frac{\delta\left(\xi_{1}-1\right)}{\left(1-\xi_{2}\right)_{+}}\right. \\
& \left.+\delta\left(\xi_{1}-1\right) \delta\left(\xi_{2}-1\right) \ln \frac{Q^{2}}{q_{\perp}^{2}}\right]
\end{aligned}
$$

Asymptotic Results

quark-antiquark annihilation:

$$
\begin{aligned}
\frac{d^{4} \Delta \sigma^{q \bar{q}-\gamma^{*} g}\left(S_{\perp}\right)}{d Q^{2} d y d^{2} q_{\perp}}= & \sigma_{0} \epsilon^{\alpha \beta} S_{\perp \alpha} \frac{q_{\perp \beta}}{\left(q_{\perp}^{2}\right)^{2}} \frac{\alpha_{s}}{2 \pi^{2}} \int \frac{d x}{x} \frac{d x^{\prime}}{x^{\prime}} \\
& \times \bar{q}\left(x^{\prime}\right)\left\{\delta\left(\xi_{2}-1\right) A+\delta\left(\xi_{1}-1\right) B\right\}
\end{aligned}
$$

where $\quad A=\frac{1}{2 N_{C}}\left\{\left[x \frac{\partial}{\partial x} T_{F}(x, x)\right]\left(1+\xi_{1}^{2}\right)+T_{F}\left(x, x-\hat{x}_{g}\right)\right.$

$$
\left.\times \frac{1+\xi_{1}}{\left(1-\xi_{1}\right)_{+}}+T_{F}(x, x) \frac{\left(1-\xi_{1}\right)^{2}\left(2 \xi_{1}+1\right)-2}{\left(1-\xi_{1}\right)_{+}}\right\}
$$

$$
+C_{F} T_{F}\left(x, x-\hat{x}_{g}\right) \frac{1+\xi_{1}}{\left(1-\xi_{1}\right)_{+}},
$$

$$
B=C_{F} T_{F}(x, x)\left[\frac{1+\xi_{2}^{2}}{\left(1-\xi_{2}\right)_{+}}+2 \delta\left(\xi_{2}-1\right) \ln \frac{Q^{2}}{q_{\perp}^{2}}\right]
$$

A_{N} in k_{T} - factorization - (I$)$

\square Factorized formula in $v \cdot A=0$ gauge:

$$
\begin{aligned}
& \frac{d^{4} \Delta \sigma(S)}{d Q^{2} d y d^{2} q_{\perp}}= \sigma_{0} \epsilon^{\alpha \beta} S_{\perp \alpha} q_{\perp \beta} \frac{1}{M_{P}} \int d^{2} \vec{k}_{1 \perp} d^{2} \vec{k}_{2 \perp} d^{2} \vec{\lambda}_{\perp} \\
& \times \frac{\vec{k}_{1 \perp} \cdot \vec{q}_{\perp}}{q_{\perp}^{2}} \delta^{(2)}\left(\vec{k}_{1 \perp}+\vec{k}_{2 \perp}+\vec{\lambda}_{\perp}-\vec{q}_{\perp}\right) \\
& \times q_{T}\left(z_{1}, k_{1 \perp}, \zeta_{1}\right) \bar{q}\left(z_{2}, k_{2 \perp}, \zeta_{2}\right) H\left(Q^{2}\right) \\
& \times\left(S\left(\lambda_{\perp}\right)\right)^{-1} \\
& \zeta^{2}=(2 v \cdot P)^{2} / v^{2}
\end{aligned}
$$

\square Need to calculate at $q_{\perp} \gg \Lambda_{\mathrm{QCD}}$

* Sivers's function $\quad q_{T}\left(x, k_{\perp}\right)$
* unpolarized k_{T}-dependent (anti)quark PDFs $\bar{q}\left(x, k_{\perp}\right)$
* Soft factor $S\left(k_{\perp}\right)$

A_{N} in k_{T} - factorization - (II)

* Expand transverse momenta in $\delta^{(2)}\left(\vec{k}_{1 \perp}+\vec{k}_{2 \perp}+\vec{\lambda}_{\perp}-\vec{q}_{\perp}\right)$ to the first power
* Use the one-loop moment relations:

$$
\begin{aligned}
& \int d^{2} \vec{k}_{\perp} q\left(z_{1}, k_{\perp}\right)=q\left(z_{1}\right), \quad \int d^{2} \vec{k}_{\perp} \bar{q}\left(z_{2}, k_{\perp}\right)=\bar{q}\left(z_{2}\right) \\
& \frac{1}{M_{P}} \int d^{2} \vec{k}_{\perp} \vec{k}_{\perp}^{2} q_{T}\left(x, k_{\perp}\right)=T_{F}(x, x) \quad \int d^{2} \vec{\lambda}_{\perp} S\left(\lambda_{\perp}\right)=1
\end{aligned}
$$

Spin-dependent cross section calculated in k_{T}-factorization approach is the same as the asymptotic limit of what calculated in collinear factorization

Is this matching obvious? No!

Spin-averaged Leading Twist

Spin-dependent - "Soft Pole"

$\int d k_{g}$ - fixed by a unpinched pole $\rightarrow k_{g}=0$

July 21, 2006

\longleftarrow Canceled by c.c.

29

Spin-dependent - "Hard Pole"

$$
\int d k_{g} \text { - fixed by a unpinched pole } \rightarrow k_{g} \neq 0
$$

$$
=(q+g \rightarrow q+g) \otimes\left(q+\bar{q} \rightarrow \gamma^{*}\right)
$$

$$
q_{\perp} \rightarrow 0
$$

Semi-inclusive DIS (SIDIS)

\square Process:

* Fixed order pQCD: $Q \sim p_{T} \gg \Lambda_{\mathrm{QCD}}$
- Single spin asym: $\quad A_{N} \propto \vec{s}_{T} \cdot(\vec{P} \times \vec{p}) \Rightarrow 0$

If P is anti-parallel to p_{h}
*When $Q \gg p_{T}, \mathbf{p}_{\mathrm{T}}$ sensitive to parton \mathbf{k}_{T}

A_{N} for Semi-inclusive DIS (SIDIS)

\square SIDIS cross section:

$$
\begin{aligned}
& \frac{d \sigma\left(S_{\perp}\right)}{d x_{B} d y d z_{h} d^{2} \vec{P}_{h \perp}}=\frac{2 \pi \alpha_{\mathrm{em}}^{2}}{Q^{4}} y L_{\mu \nu}(\ell, q) W^{\mu \nu}\left(P, S_{\perp}, q, P_{h}\right) \\
& z_{h} \equiv P \cdot P_{h} / P \cdot q \quad y \equiv P \cdot q / P \cdot \ell \\
& L^{\mu \nu}(\ell, q)=2\left(\ell^{\mu} \ell^{\prime \nu}+\ell^{\mu} \ell^{\prime \nu}-g^{\mu \nu} Q^{2} / 2\right) \\
& W^{\mu \nu}\left(P, S_{\perp}, q, P_{h}\right)=\frac{1}{4 z_{h}} \sum_{X} \int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{i q \cdot \xi}\langle P S| J_{\mu}(\xi)\left|X P_{h}\right\rangle\left\langle X P_{h}\right| J_{\nu}(0)|P S\rangle
\end{aligned}
$$

\square Polarized SIDIS cross section:

$$
\Delta \sigma\left(S_{\perp}\right)=\left[\sigma\left(S_{\perp}\right)-\sigma\left(-S_{\perp}\right)\right] / 2
$$

Enough vectors to form the invariant
Explicit model calculation

$$
A_{N}^{\text {SIDIS }} \neq 0
$$

Hadronic tensor and structure functions

\square Virtual photon momentum:

$$
q^{\mu}=q_{t}^{\mu}+\frac{q \cdot P_{h}}{P \cdot P_{h}} P^{\mu}+\frac{q \cdot P}{P \cdot P_{h}} P_{h}^{\mu} \quad \text { with } \quad q_{t}^{\mu} P_{\mu}=q_{t}^{\mu} P_{h \mu}=0
$$

\square Independent structure functions:

$$
W^{\mu \nu}=\sum_{i=1}^{5} \mathcal{V}_{i}^{\mu \nu} W_{i} \quad W_{i}=W_{\alpha \beta} \tilde{\mathcal{V}}_{i}^{\alpha \beta}
$$

With five parity and current conserving tensors $\mathcal{V}_{i}^{\mu \nu}$
and five corresponding inverse tensors $\tilde{\mathcal{V}}_{i}^{\alpha \beta}$
\square Conserving tensors:

$$
\begin{aligned}
& \mathcal{V}_{1}^{\mu \nu}=X^{\mu} X^{\nu}+Y^{\mu} Y^{\nu} \\
& \tilde{\mathcal{V}}_{1}^{\mu \nu}=\frac{1}{2}\left(2 T^{\mu} T^{\nu}+X^{\mu} X^{\nu}+Y^{\mu} Y^{\nu}\right)
\end{aligned}
$$

All other tensors give the Sub-leading term when $\mathrm{q}_{\mathrm{T}} \ll \mathrm{Q}$
\square Orthonormal basis vectors:

$$
\begin{array}{ll}
T^{\mu}=\frac{1}{Q}\left(q^{\mu}+2 x_{B} P^{\mu}\right) & X^{\mu}=\frac{1}{q_{\perp}}\left[\frac{P_{h}^{\mu}}{z_{h}}-q^{\mu}-\left(1+\frac{q_{\perp}^{2}}{Q^{2}}\right) x_{B} P^{\mu}\right] \\
Y^{\mu}=\epsilon^{\mu \nu \rho \sigma} Z_{\nu} X_{\rho} T_{\sigma} & Z^{\mu}=-\frac{q^{\mu}}{Q} \quad \vec{q}_{\perp}^{2} \equiv-q_{t}^{2}
\end{array}
$$

With normalization: $T^{\mu} T_{\mu}=1, X^{\mu} X_{\mu}=Y^{\mu} Y_{\mu}=Z^{\mu} Z_{\mu}=-1$
\square Leading result when $\mathrm{q}_{\mathrm{T}} \ll \mathrm{Q}$:

$$
\begin{aligned}
\frac{d \Delta \sigma\left(S_{\perp}\right)}{d x_{B} d y d z_{h} d^{2} \vec{P}_{h \perp}}= & -\frac{4 \pi \alpha_{\mathrm{em}}^{2} S_{e p}}{Q^{4}} \epsilon^{\alpha \beta} S_{\perp}^{\alpha} \frac{z_{h} P_{h \perp}^{\beta}}{\left(\vec{P}_{h \perp}^{2}\right)^{2}} \frac{\alpha_{s}}{2 \pi^{2}} \int \frac{d x d z}{x z} \hat{q}(z) \\
& \times\{\delta(\hat{\xi}-1) A+\delta(\xi-1) B\}
\end{aligned}
$$

Where A and B are the same as those for Drell-Yan
But, the asymmetry has an opposite sign due to the expected sign difference between the Sivers functions

Summary and outlook

* Two mechanisms for generating single transverse-spin asymmetry are closely connected
* They describe the same physics in the region where they are both valid
- an important constraint to phenomenological fits to data
* What should we use for hadronic processes where QCD factorization may not be valid
"First" test of QCD beyond the leading twist level

Backup transparencies

When does the factorization lose its predictive power?

At the time when the nonperturbative functions lose their universality

* For final-state fragmentation:

Factorization breaks if the fragmentation took place inside the hadronic medium

$\Leftrightarrow \quad$ If the lifetime of the parton state of momentun k is shorter than the medium size
Lifetime: $\quad \Delta y_{\perp} \sim \Delta t \sim \frac{1}{\Delta E} \sim \frac{2 \ell_{\perp}}{m_{\text {jet }}^{2}} \gg L_{\text {medium }} \sim 2 r_{0} \sim 2 \mathrm{fm}$

$$
\leadsto \ell_{\perp} \gg 5 \mathrm{GeV}\left(\frac{m_{j e t}^{2}}{\mathrm{GeV}^{2}}\right)
$$

Open questions - (I)

How much overlap between k_{T}-approach at low p_{T} and twist expansion at high p_{T} ?

$$
\mathbf{k}_{\mathrm{T}} \text { approach }
$$

Sivers:

$$
f_{1 T}^{\perp}(x)
$$

$$
H_{1}^{\perp}(z)
$$

Twist-3
$T_{F}(x, x)$
$D^{(3)}(z, z)$

* What these nonperturbative functions try to tell us?
"direct k_{T} " vs " $k_{T}-$ moments"

Seperate Sivers' and Collins' functions

Transversely polarized target
\downarrow
Sivers
$\left\langle\sin \left(\phi-\phi_{s}\right)\right\rangle$ moment
$f_{1 T}^{\perp}(x)$

Collins
$\left\langle\sin \left(\phi+\phi_{s}\right)\right\rangle$ moment

$$
h_{1}(x), H_{1}^{\perp}(z)
$$

ϕ_{S} : Angle between $\overrightarrow{S_{\perp}}$ and L.P.
ϕ : Angle between L.P. and H.P.

Measure Sivers' and Collins' functions

\therefore sIDIS: $e p^{\uparrow} \longrightarrow e^{\prime} \pi X$ study azimuthal distribution of π 's:
with transversely polarized target:
(unpolarized beam)

* Collins functions:

$$
\begin{aligned}
A_{U T}^{\mathrm{Sin} \Phi} & =\sum_{q} \frac{e_{q}^{2} \delta q(x) H_{1}^{\perp}(z)}{e_{q}^{2} q(x) D(z)} \\
\Phi & =\phi+\phi_{S} \text { Collins angle }
\end{aligned}
$$

Initial success of RHIC pp runs

$\square \pi^{0}$ cross section measured over 8 order of magnitude [PRL 91, 241803 (2003)]
\square Good agreement with NLO pQCD calculation at low p_{T}

Can be used in interpretation of spin-dependent results
9.6\% normalization error not shown

Numerical results - (I)

(compare apples with oranges)

Qiu and Sterman Phy. Rev. D, 1999

Fermilab data with ℓ_{T} up to 1.5 GeV

Numerical results - (II)

(compare apples with oranges)

Model for $T_{F}(x, x)$

* $T_{F}(x, x)$ tells us something about quark's transverse motion in a transversely polarized hadron
* It is non-perturbative, has unknown x-dependence

$$
T_{F}(x, x) \propto\left\langle P, \vec{s}_{T}\right| \bar{\psi}_{a}(0) \gamma^{+}\left[\int d y_{2}^{-} \epsilon^{s} T^{\sigma n \bar{n}} F_{\sigma}^{+}\left(y_{2}^{-}\right)\right] \psi_{a}\left(y_{1}^{-}\right)\left|P, \vec{s}_{T}\right\rangle
$$

Model for $T_{F}(x, x)$ of quark flavor a :

$$
\begin{array}{ll}
T_{F_{a}}(x, x) \equiv \kappa_{a} \lambda q_{a}(x) \\
\text { with } \kappa_{u}=+1 \text { and } k_{d}=-1 \text { for proton } \\
\text { Fitting parameter } \lambda \sim O\left(\Lambda_{\mathrm{QCD}}\right)
\end{array} \quad \square \begin{aligned}
& A_{N} \propto\left(\frac{\ell_{\perp}}{-\hat{u}}\right) \frac{n}{1-x} \\
& \text { if } T_{F}(x, x) \propto q(x) \propto(1-x)^{n}
\end{aligned}
$$

One parameter and one sign!

Model for $T_{F}(x, x)$

* $T_{F}(x, x)$ tells us something about quark's transverse motion in a transversely polarized hadron
* It is non-perturbative, has unknown x-dependence

$$
T_{F}(x, x) \propto\left\langle P, \vec{s}_{T}\right| \bar{\psi}_{a}(0) \gamma^{+}\left[\int d y_{2}^{-} \epsilon^{s} T^{\sigma n \bar{n}} F_{\sigma}^{+}\left(y_{2}^{-}\right)\right] \psi_{a}\left(y_{1}^{-}\right)\left|P, \vec{s}_{T}\right\rangle
$$

Model for $T_{F}(x, x)$ of quark flavor a :

$$
\begin{array}{ll}
T_{F_{a}}(x, x) \equiv \kappa_{a} \lambda q_{a}(x) \\
\text { with } \kappa_{u}=+1 \text { and } k_{d}=-1 \text { for proton } \\
\text { Fitting parameter } \lambda \sim O\left(\Lambda_{\mathrm{QCD}}\right)
\end{array} \quad \square \begin{aligned}
& A_{N} \propto\left(\frac{\ell_{\perp}}{-\hat{u}}\right) \frac{n}{1-x} \\
& \text { if } T_{F}(x, x) \propto q(x) \propto(1-x)^{n}
\end{aligned}
$$

One parameter and one sign!

Intrinsic vs dynamical k_{T}

In q-P frame, if $k_{T} \sim p_{T} \ll Q$

* we can neglect k^{2} in partonic part
* But, we cannot neglect k_{T} in partonic part

$$
\Longrightarrow k^{\mu}=x P^{\mu}+k_{\perp}^{\mu}+\frac{k_{T}^{2}}{2 k \cdot n} n^{\mu}
$$

\square One can define k_{T}-dependent and gauge invariant parton distributions
\square Soft interaction between the hadrons can spoil factorization
\square Sudakov resummation (done in b - or k_{T}-space) resums dynamical k_{T} from gluon shower
\square Parton orbital motion is more relevant to the intrinsic \mathbf{k}_{T}

K_{T} - Factorization

$\square \mathrm{k}_{\mathrm{T}}$-factorization measures parton k_{T} directly, while twist-expansion gives integrated k_{T} information
\square No formal proof of k_{T}-factorization for hadronic collisions at $k_{T} \sim p_{T}$

$$
Q \sim p_{T} \gg k_{T}
$$

\square Factorization requires a separation of perturbative hard scale from nonperturbative hadronic scale \longrightarrow a physical hard scale, \mathbf{Q}, much larger than the \mathbf{k}_{T}
$\square \mathrm{k}_{\mathrm{T}}$-factorization works for semi-inclusive DIS and Drell-Yan, or others with a large scale Q

